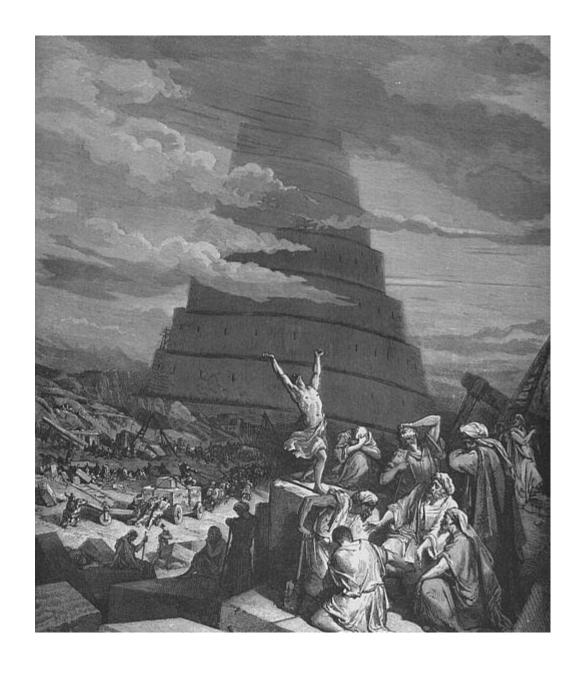
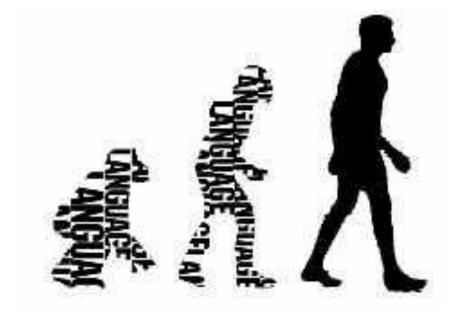

Human self-domestication and the evolution of modern language(s)

INVITED TALK 2

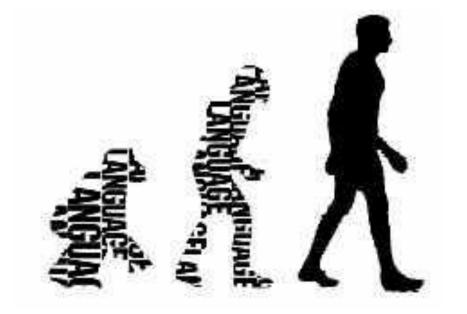

Antonio Benítez Burraco

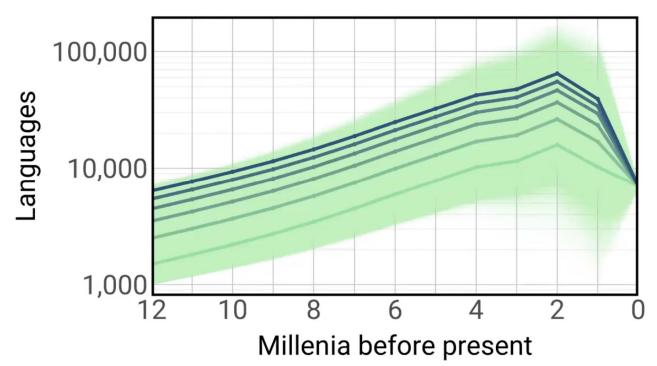
Department of Spanish, Linguistics, and Theory of Literature (Linguistics)

University of Seville (Spain)


REVIEW ARTICLE


The major evolutionary transitions


Eörs Szathmáry & John Maynard Smith

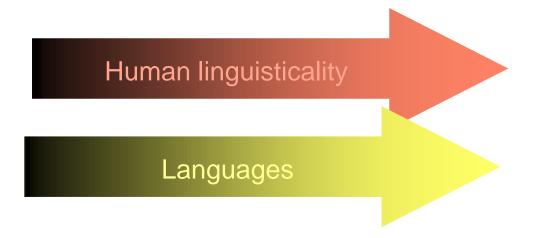

There is no theoretical reason to expect evolutionary lineages to increase in complexity with time, and no empirical evidence that they do so. Nevertheless, eukaryotic cells are more complex than prokaryotic ones, animals and plants are more complex than protists, and so on. This increase in complexity may have been achieved as a result of a series of major evolutionary transitions. These involved changes in the way information is stored and transmitted.

- (8) The emergence of proto-language in *Homo erectus*—a cultural inheritance system with limited potential in which, because of the absence of grammar, only certain types of statement can be made⁴⁸.
- (9) The emergence of human language with a universal grammar⁴⁹ and unlimited semantic representation⁵⁰.

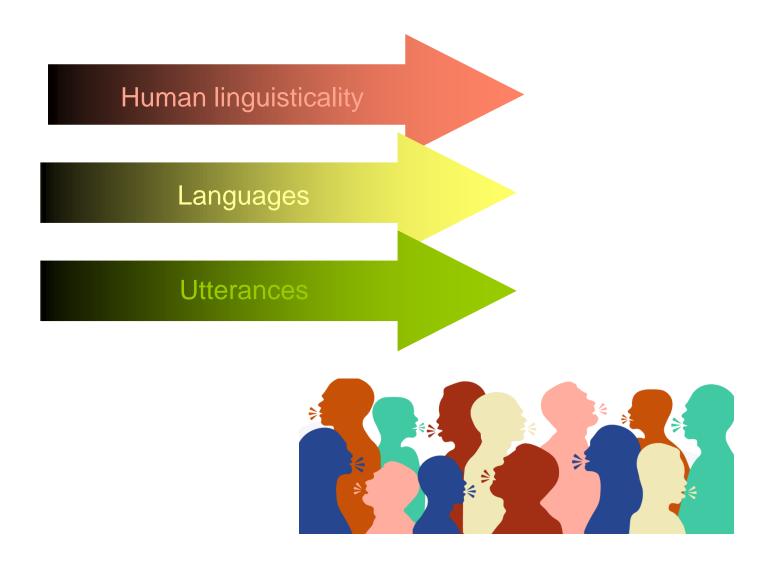
Human linguisticality

SCIENCE'S COMPASS

REVIEW: NEUROSCIENCE

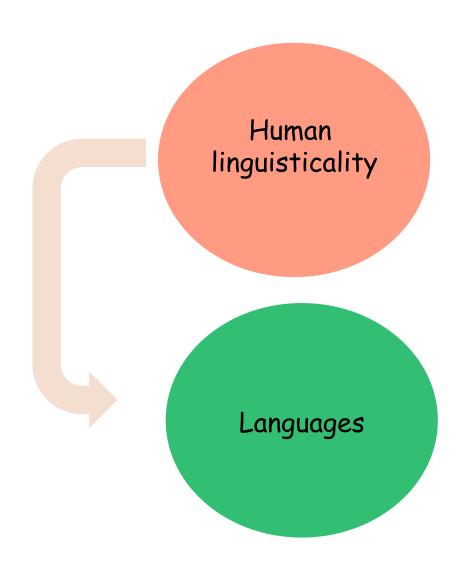

The Faculty of Language: What Is It, Who Has It, and How Did It Evolve?

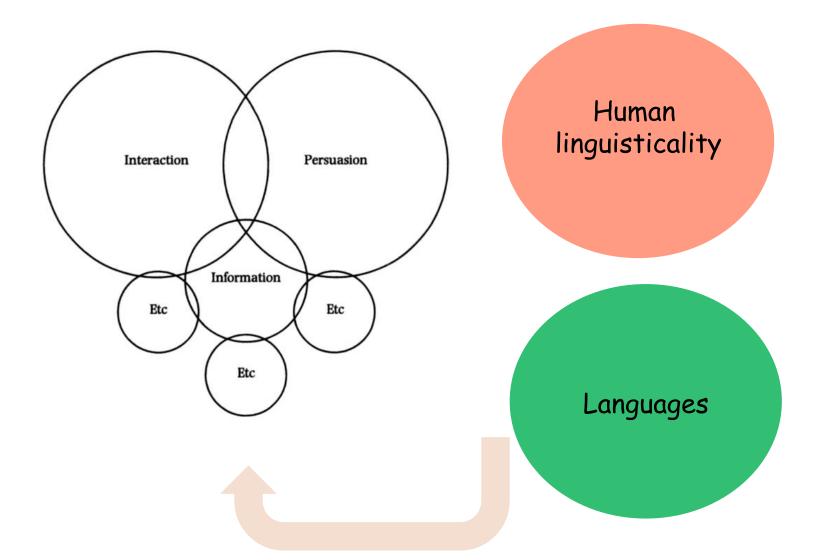
Marc D. Hauser, 1* Noam Chomsky, 2 W. Tecumseh Fitch 1


We argue that an understanding of the faculty of language requires substantial interdisciplinary cooperation. We suggest how current developments in linguistics can be profitably wedded to work in evolutionary biology, anthropology, psychology, and neuroscience. We submit that a distinction should be made between the faculty of language in the broad sense (FLB) and in the narrow sense (FLN). FLB includes a sensory-motor system, a conceptual-intentional system, and the computational mechanisms for recursion, providing the capacity to generate an infinite range of expressions from a finite set of elements. We hypothesize that FLN only includes recursion and is the only uniquely human component of the faculty of language. We further argue that FLN may have evolved for reasons other than language, hence comparative studies might look for evidence of such computations outside of the domain of communication (for example, number, navigation, and social relations).

question of language evolution, and of how humans acquired the faculty of language.

In exploring the problem of language evolution, it is important to distinguish between questions concerning language as a communicative system and questions concerning the computations underlying this system, such as those underlying recursion. As we argue below, many acrimonious debates in this field have been launched by a failure to distinguish between these problems. According to one view (1), questions concerning abstract computational mechanisms are distinct from



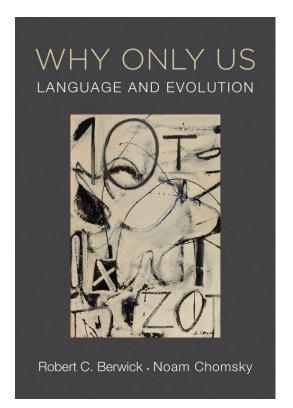


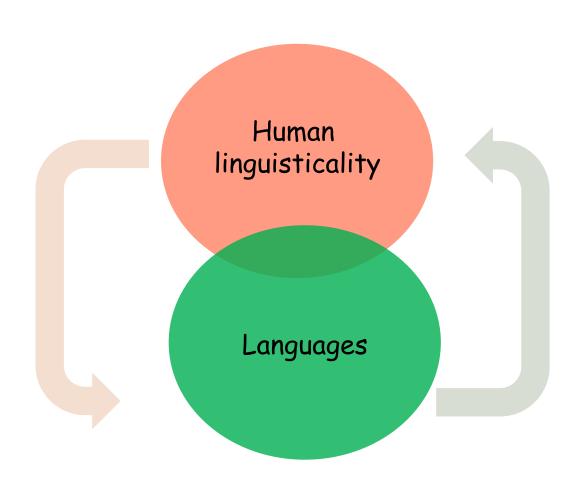
HOW I HAVE STRUCTURED MY TALK

- 1. Introduction
- 2. Language(s) evolution (research): an outline
- 3. The self-domestication account of human evolution
- 4. Conclusions and future prospects

Abstract: The evolution of the faculty of language largely remains an enigma. In this essay, we ask why. Language's evolutionary analysis is complicated because it has no equivalent in any nonhuman species. There is also no consensus regarding the essential nature of the language "phenotype." According to the "Strong Minimalist Thesis," the key distinguishing feature of language (and what evolutionary theory must explain) is hierarchical syntactic structure. The faculty of language is likely to have emerged quite recently in evolutionary terms, some 70,000–100,000 years ago, and does not seem to have undergone modification since then, though individual languages do of course change over time, operating within this basic framework. The recent emergence of language and its stability are both consistent with the Strong Minimalist Thesis, which has at its core a single repeatable operation that takes exactly two syntactic elements a and b and assembles them to form the set {a, b}.

OPEN & ACCESS Freely available online

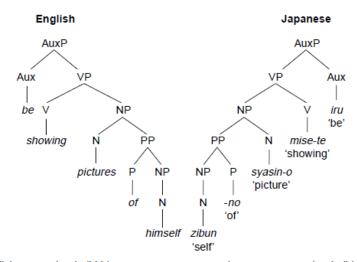



Essav

How Could Language Have Evolved?

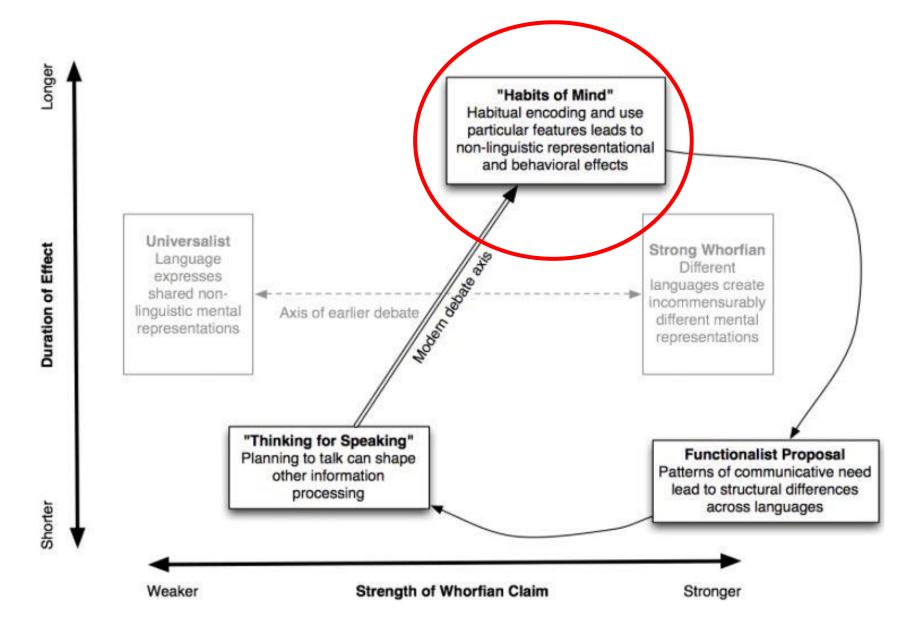
1 Cognitive Neurobiology and Helmholtz Institute, Departments of Psychology and Biology, Utrecht University, Utrecht, The Netherlands, 2 Department of Zoology and Sidney Sussex College, University of Cambridge, Cambridge, United Kingdom, 3 Division of Anthropology, American Museum of Natural History, New York, New York, United States of America, 4 Department of Linguistics and Philosophy, MIT, Cambridge, Massachusetts, United States of America, 5 Department of Electrical Engineering & Computer Science and Brain and Cognitive Sciences, MIT, Cambridge, Massachusetts, United States of America

SCIENTIFIC REPORTS


OPEN The word order of languages predicts native speakers' working memory

Received: 3 May 2018

Accepted: 12 December 2018


Published online: 04 February 2019

Federica Amici^{1,2}, Alex Sánchez-Amaro^{3,4}, Carla Sebastián-Enesco⁵, Trix Cacchione^{6,7}, Matthias Allritz³, Juan Salazar-Bonet⁸ & Federico Rossano⁴

English parameter: build bigger phrases by adding new words on the left

Japanese parameter: build bigger phrases by adding new words on the right

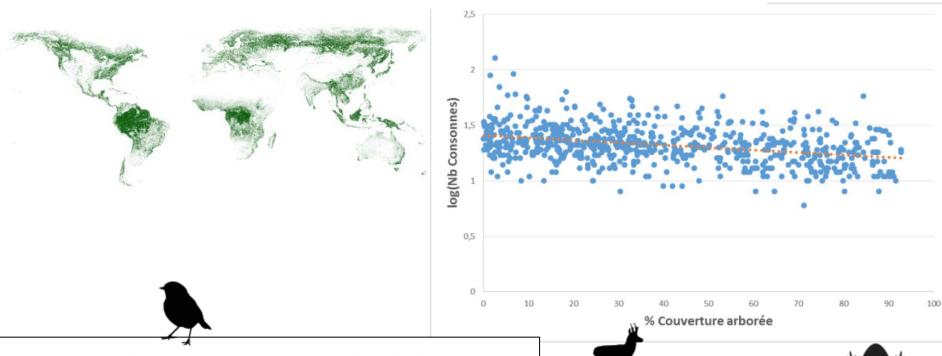
COGNITIVE

the cultural evolution of thinking

Cecilia Heyes

Human linguisticality

Languages



Quelle adaptation acoustique pour les langues du monde ?

C. Coupe^a et I. Maddieson^b

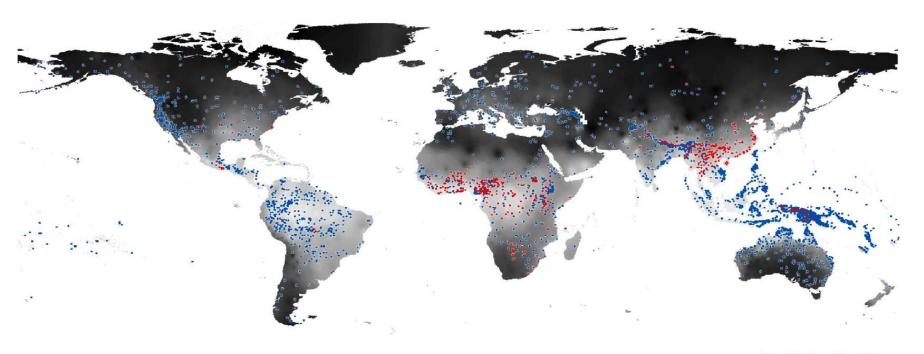
^aLaboratoire Dynamique du Langage, Institut des Sciences de l'Homme, 14 Avenue Berthelot, 69007 Lyon, France

^bDepartment of Linguistics, University of New Mexico, MSC03 2130, 1 University of New Mexico, Albuquerque, 87131-0001, USA christophe.coupe@cnrs.fr

Functional Ecology 2007 **21**, 134–142

Habitat structure and the evolution of bird song: a meta-analysis of the evidence for the acousti adaptation hypothesis

GIUSEPPE BONCORAGLIO† and NICOLA SAINO


Dipartimento di Biologia, Università di Milano, via Celoria 26, I-20133 Milano, Italy

Original Articles

THE "ACOUSTIC ADAPTATION HYPOTHESIS"—A REVIEW OF THE EVIDENCE FROM BIRDS, ANURANS AND MAMMALS

E. EY & J. FISCHER

Pages 21-48 | Received 25 Nov 2008, Accepted 06 Feb 2009, Published online: 13 Apr 2012

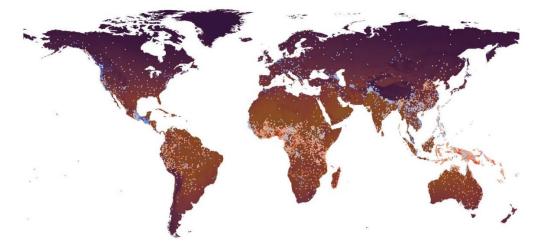
Trends in Cognitive Sciences

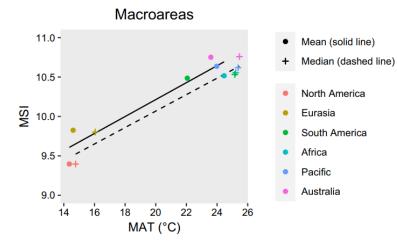
Figure 2. The Relation between Climate and Use of Tone. Languages that use lexical tone (red dots) tend to be distributed in warmer and more humid climates (lighter shading) than languages that lack tone (blue dots) [49] possibly due to dryer air making precise vocal control more difficult. Reproduced, with permission, from [49].

PNAS Nexus, 2023, 2, 1-9

https://doi.org/10.1093/pnasnexus/pgad384 Advance access publication 5 December 2023

Research Report

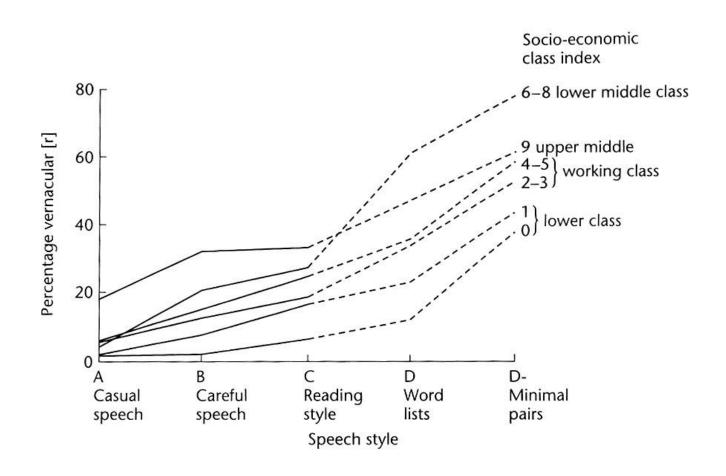

Temperature shapes language sonority: Revalidation from a large dataset


Tianheng Wang (Da, Søren Wichmann (Db), Quansheng Xia (Dc,* and Qibin Ran (Da,d,*

Edited By: Emilio Moran

Table 1. Sonority scale adapted and supplemented from Parker (34, 35).

Natural class	Index
Voiceless plosives and clicks	1
Voiceless affricates	2
Voiceless fricatives	3
Voiced plosives	4
Voiced affricates	5
Voiced fricatives	6
Nasals	7
Laterals	9
Rhotics	10
Semivowels	12
Interior vowels	13
High peripheral vowels	15
Mid peripheral vowels	16
Low vowels	17


^aSchool of Liberal Arts, Nankai University, Tianjin 300071, China

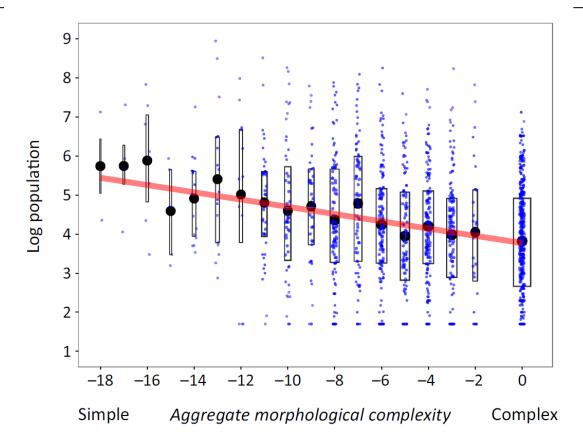
^bCluster of Excellence ROOTS, Kiel University, 24118 Kiel, Germany

^cCollege of Chinese Language and Culture, Nankai University, Tianjin 300071, China

^dLaboratory of Social Science of Tianjin, Nankai University, Tianjin 300071, China

^{*}To whom correspondence should be addressed: Email: xiaqsh@nankai.edu.cn (Q. Xia); ranqibin@126.com (Q. Ran)

	•	
	Singular	Plural
1. teacher	murutani	arutani
girl	muiretu	airetu
woman	mutumia	atumia
4. buyer	muguri	aguri
5. root	muri	miri
6. tree	muti	miti
7. lion	muroodi	miroodi
8. mattress	muuto	miuto
9. chair	geti	eti
10. yam	gikoa	ikoa
11. tray	gitaruru	itaruru



Language Structure Is Partly Determined by Social Structure

Gary Lupyan¹*, Rick Dale²

1 Institute for Research on Cognitive Science and Center for Cognitive Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America,
2 Department of Psychology. The University of Memohis. Memohis Tennessee, United States of America.

Oxford

SOCIOLINGUISTIC

TYPOLOGY

Social Determinants of Linguistic Complexity

Peter Trudgill

Language Structure Is Partly Determined by Social Structure

Gary Lupyan 1*, Rick Dale2

1 Institute for Research on Cognitive Science and Center for Cognitive Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania

ted States of America

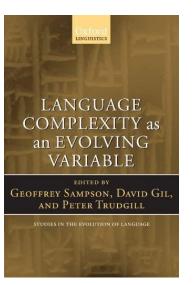
Lingua 117 (2007) 543-578

www.elsevier.com/locate/lingua

The consequences of talking to strangers: Evolutionary corollaries of socio-cultural influences on linguistic form

Alison Wray a,*, George W. Grace b

Phil. Trans. R. Soc. B (2012) 367, 1829–1836 doi:10.1098/rstb.2011.0216


Review

Social scale and structural complexity in human languages

Daniel Nettle*

Centre for Behaviour and Evolution and Institute of Neuroscience, Newcastle University, Henry Wellcome Building, Framlington Place, Newcastle NE2 4HH, UK

PLOS ONE

RESEARCH ARTICLE

Linguistic correlates of societal variation: A quantitative analysis

Sihan Cheno¹⁶, David Gil²⁶, Sergey Gaponov³, Jana Reifegersteo⁴, Tessa Yuditha⁵, Tatiana Tatarinova³, Ljiljana Progovac^{5‡}, Antonio Benítez-Burracoo^{5‡} *

1 Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States of America, 2 Department of Linguistic and Cultural Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany, 3 Department of Biology and Computational Biology, University of LaVerne, LaVerne, CA, United States of America, 4 Department of Neurology, Georgetown University, Washington, DC, United States of America, 5 Department of Spanish, Linguistics & Theory of Literature, University of Seville, Seville, Spain, 6 Linguistics Program, Wayne State University, Detroit, MI, United States of America

These authors contributed equally to this work.

‡LP and ABB also contributed equally to this work.

Available online at www.sciencedirect.com

Lingua 117 (2007) 543-578

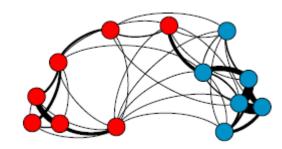
The consequences of talking to strangers: Evolutionary corollaries of socio-cultural influences on linguistic form

Alison Wray a,*, George W. Grace b

^a Humanities Building, Colum Drive, Cardiff CF10 3EU, UK ^b Department of Linguistics, 569 Moore Hall, 1890 East-West Road, Honolulu, HI 96822, USA

- complex phonologies
- opaque morphologies
- limited semantic transparency
- limited compositional structure
- less sophisticated syntax

Lingua 117 (2007) 543-578

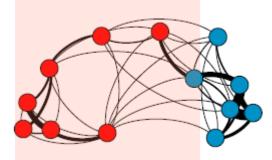

The consequences of talking to strangers: Evolutionary corollaries of socio-cultural influences on linguistic form

Alison Wray a,*, George W. Grace b

^a Humanities Building, Colum Drive, Cardiff CF10 3EU, UK
^b Department of Linguistics, 569 Moore Hall, 1890 East-West Road, Honolulu, HI 96822, USA

- complex phonologies
- opaque morphologies
- limited semantic transparency
- limited compositional structure
- less sophisticated syntax

- expanded vocabularies
- increased syntactic complexity
- simpler sound combinations
- More transparent/regular morphologies
- greater compositionality
- enhanced semantic transparency



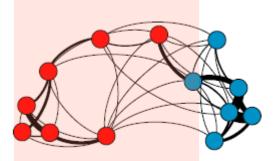
Shared knowldege

- complex phonologies
- opaque morphologies
- limited semantic transparency
- limited compositional structure
- less sophisticated syntax

Non-shared knowldege

- expanded vocabularies
- increased syntactic complexity
- simpler sound combinations
- more transparent/regular morphologies
- greater compositionality
- enhanced semantic transparency

(e)S(oteric) languages


Shared knowldege

- complex phonologies
- opaque morphologies
- limited semantic transparency
- limited compositional structure
- less sophisticated syntax

(e)X(oteric) languages

Non-shared knowldege

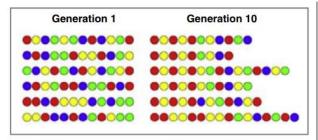
- expanded vocabularies
- increased syntactic complexity
- simpler sound combinations
- more transparent/regular morphologies
- greater compositionality
- enhanced semantic transparency

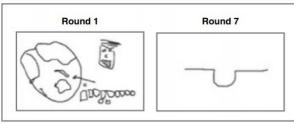
Cognition 141 (2015) 87-102

Contents lists available at ScienceDirect

Cognition

journal homepage: www.elsevier.com/locate/COGNIT


Compression and communication in the cultural evolution of linguistic structure



Simon Kirby a,*, Monica Tamariz a, Hannah Cornish b, Kenny Smith a

^a School of Philosophy, Psychology and Language Sciences, University of Edinburgh, Edinburgh, United Kingdom

^b School of Psychology, University of Stirling, Stirling, United Kingdom

0	ege-wawu	*	mega	1,3	gamene-wawu
	ege-wawa	*	mega-wawa		gamene-wawa
9	ege-wuwu	E.S	mega-wuwu	心	gamene-wuwu
T	ege	323	wulagi	30	gamane

The cultural evolution of language Monica Tamariz and Simon Kirby

Human language has unusual structural properties that enable open-ended communication. In recent years, researchers have begun to appeal to cultural evolution to explain the emergence of these structural properties. A particularly fruitful approach to this kind of explanation has been the use of laboratory experiments. These typically involve participants learning and interacting using artificially constructed communication systems. By observing the evolution of these systems in the lab, researchers have been able to build a bridge between individual cognition and population-wide emergent structure. We review these advances, and show how cultural evolution has been used to explain the origins of structure in linguistic signals, and in the mapping between signals and meanings.

Address

School of Philosophy, Psychology & Language Sciences, University of Edinburgh, 3 Charles St, Edinburgh, UK

Corresponding author: Kirby, Simon (simon@ling.ed.ac.uk)

Current Opinion in Psychology 2016, 8:37-43

This review comes from a themed issue on Culture

Edited by Michele J Gelfand and Yoshihisa Kashima

For a complete overview see the Issue and the Editorial

Available online 14th September 2015

http://dx.doi.org/10.1016/j.copsyc.2015.09.003

2352-250X/© 2015 Elsevier Ltd. All rights reserved.

The emergence of grammar: Systematic structure in a new language

Wendy Sandler*, Irit Meir†, Carol Padden‡§, and Mark Aronoff¶

*Department of English Language and Literature and [†]Departments of Hebrew Language and Communication Disorders and Language Sciences, University of Haifa, 31905 Haifa, Israel; [‡]Department of Communication, University of California at San Diego, La Jolla, CA 92093; and [¶]Department of Linguistics, Stony Brook University, Stony Brook, NY 11794

Edited by Jeremy A. Sabloff, University of Pennsylvania Museum of Archaeology and Anthropology, Philadelphia, PA, and approved January 3, 2005 (received for review August 2, 2004)

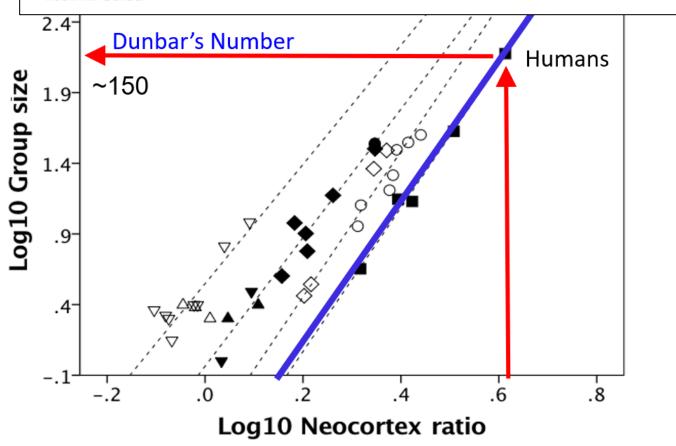
Cultural Constraints on Grammar and Cognition in Pirahã

Another Look at the Design Features of Human Language

by Daniel L. Everett

kobai -baí 'áoói ti hi -intensive foreigner he see 'íkao -iig -ap -áp mouth -pull -continuative -declarative -up "I really watch[ed] the foreigner fishing [with line and hook]." (lit. "I watch the foreigner intently. He was pulling [fish] out by [their] mouths.")

Human linguisticality

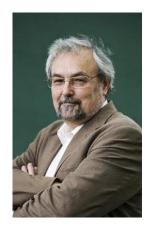

Languages

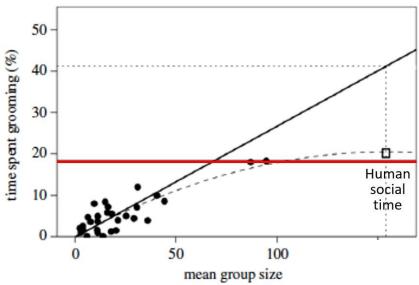
178 Evolutionary Anthropology

ARTICLES

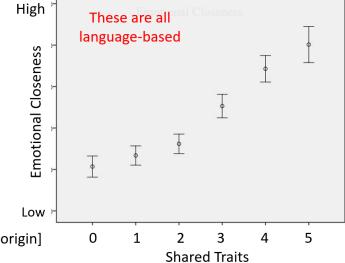
The Social Brain Hypothesis

Robin I.M. Dunbar




KEIO/2

Social Bonding Primate-Style


ARTICLES

- Same language/dialect
- Same place of origin
- Same career trajectory
- Same hobbies/interests
- Same worldview
- Same musical tastes
- Same sense of humour

[all are cues of community of origin]

ARTICLES

The Social Brain Hypothesis

Robin I.M. Dunbar

Narrative Persuasion. A Cognitive Perspective on Language Evolution

Human linguisticality

Languages

S-languages

Shared knowldege

↑ declarative memory

↓ procedural memory

Long Term Memory

Declarative Memory

Things you know that you can tell others

Nondeclarative (Procedural) Memory

Things you know that you can show by doing

- complex phonologies
- opaque morphologies
- limited semantic transparency
- limited compositional structure
- less sophisticated syntax

CHAPTER

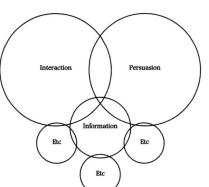
76

The Declarative/Procedural Model: A Neurobiological Model of Language Learning, Knowledge, and Use

Michael T. Ullman

Brain and Language Laboratory, Department of Neuroscience, Georgetown University, Washington, DC, USA

S-languages

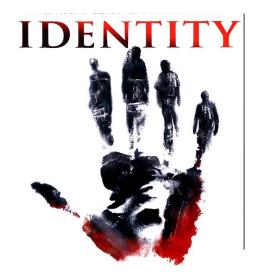

Shared knowldege

- ↑ declarative memory
- procedural memory
- working memory
- executive function
- 1 perception, emotion, or sensorimotor

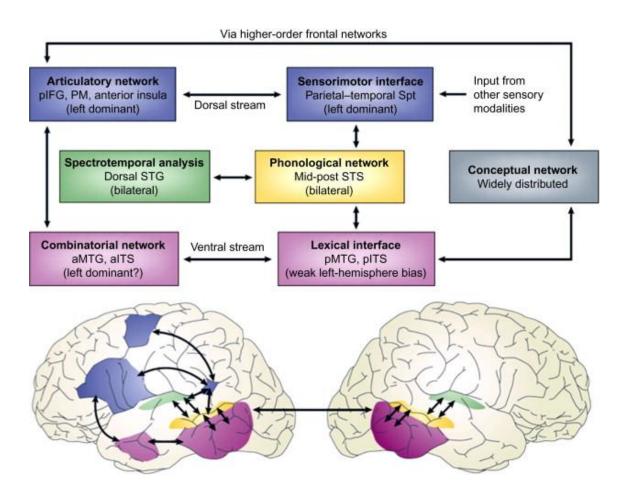
- complex phonologies
- opaque morphologies
- limited semantic transparency
- limited compositional structure
- less sophisticated syntax

Human linguisticality

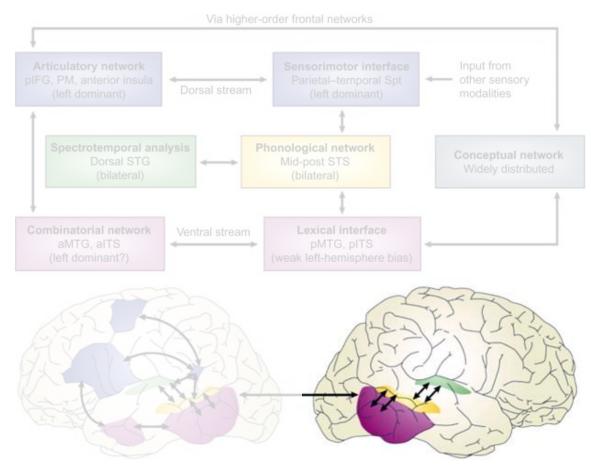
Languages

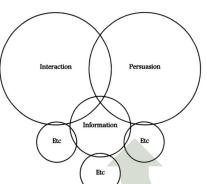


S-languages


ti	kobai	-baí	'áoói	hi
I	see	-intens	ive foreigner	he
'íkao	<i>-ap</i>	-áp	-iig	-á
mouth	ı -pull	-up	-continuati	ve -declarative
"I really watch[ed] the foreigner fishing [with line				
and hook]." (lit. "I watch the foreigner intently.				
He was pulling [fish] out by [their] mouths.")				

X-languages

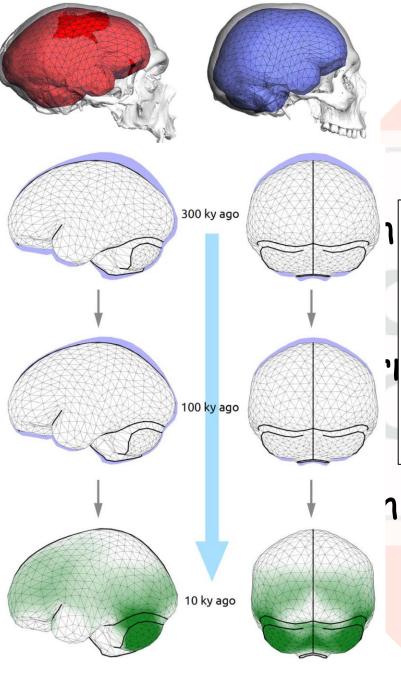

When, in the course of human events, it becomes necessary for one people to dissolve the political bands which have connected them with another, and to assume among the powers of the earth, the separate and equal station to which the laws of nature and of nature's God entitle them, a decent respect to the opinions of mankind requires that they should declare the causes which impel them to the separation.



More involved in:

- figurative language
- implicit meanings
- background knowledge
- discourse contexts
- pragmatic interpretations

Human linguisticality

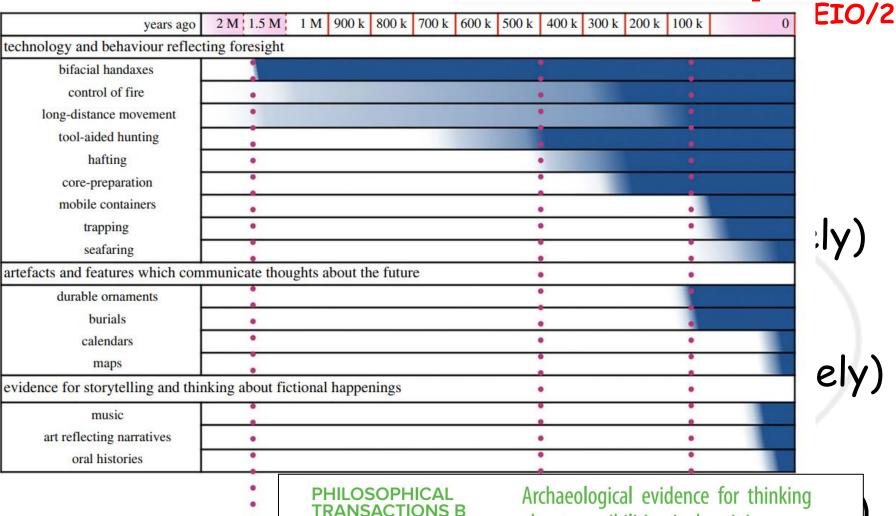

Languages

Biological modernity (evolving progresively)

Behavioral modernity (evolving progresively)

Linguistic modernity (evolving progresively)

SCIENCE ADVANCES | RESEARCH ARTICLE


PALEONTOLOGY

The evolution of modern human brain shape

Simon Neubauer,* Jean-Jacques Hublin, Philipp Gunz

Modern humans have large and globular brains that distinguish them from their extinct *Homo* relatives. The characteristic globularity develops during a prenatal and early postnatal period of rapid brain growth critical for neural wiring and cognitive development. However, it remains unknown when and how brain globularity evolved and how it relates to evolutionary brain size increase. On the basis of computed tomographic scans and geometric morphometric analyses, we analyzed endocranial casts of *Homo sapiens* fossils (*N* = 20) from different time periods. Our data show that, 300,000 years ago, brain size in early *H. sapiens* already fell within the range of present-day humans. Brain shape, however, evolved gradually within the *H. sapiens* lineage, reaching present-day human variation between about 100,000 and 35,000 years ago. This process started only after other key features of craniofacial morphology appeared modern and paralleled the emergence of behavioral modernity as seen from the archeological record. Our findings are consistent with important genetic changes affecting early brain development within the *H. sapiens* lineage since the origin of the species and before the transition to the Later Stone Age and the Upper Paleolithic that mark full behavioral modernity.

nity (evolving progresively)

royalsocietypublishing.org/journal/rstb

Research

Cite this article: Langley MC, Suddendorf T. 2022 Archaeological evidence for thinking about possibilities in hominin evolution. *Phil. Trans. R. Soc. B* **377**: 20210350. https://doi.org/10.1098/rstb.2021.0350

Archaeological evidence for thinking about possibilities in hominin evolution

Michelle C. Langley^{1,2} and Thomas Suddendorf³

(D) MCL, 0000-0002-0299-5561; TS, 0000-0003-3328-7442

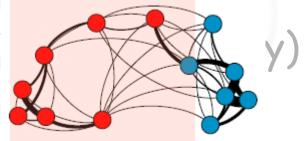
The emergence of the ability to think about future possibilities must have played an influential role in human evolution, driving a range of foresightful behaviours, including preparation, communication and technological inno-

¹Australian Research Centre for Human Evolution, and ²Archaeology, School of Environment and Science, Griffith University, Brisbane, 4111 Queensland, Australia

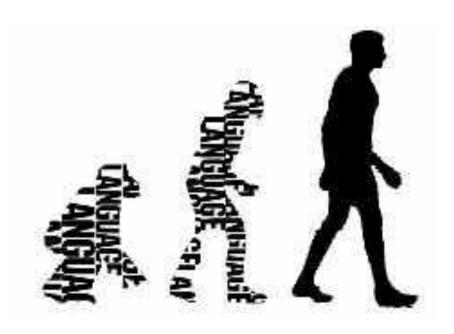
³School of Psychology, The University of Queensland, 4072 Queensland, Australia

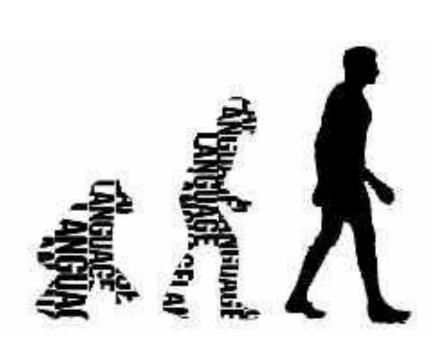
Prehistory

Biological modernity (evolving progresively)

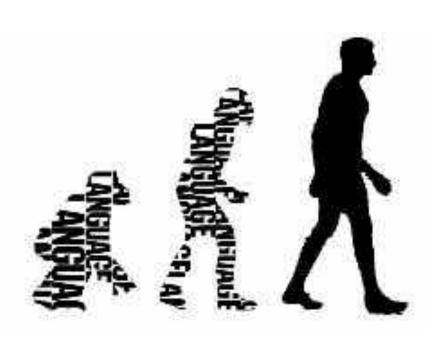

S-languages

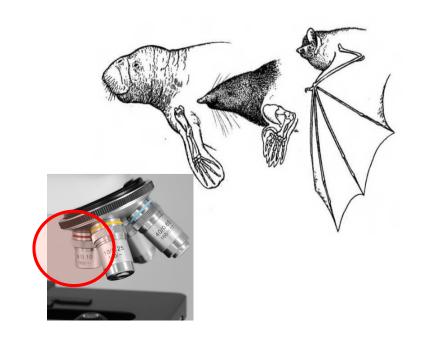
Beha

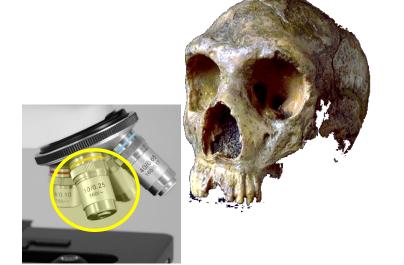

nodernity (evolvi

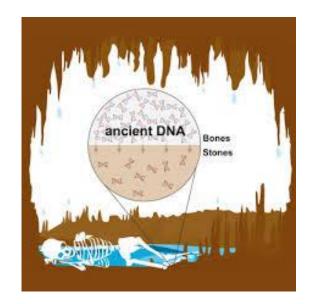

X-languages

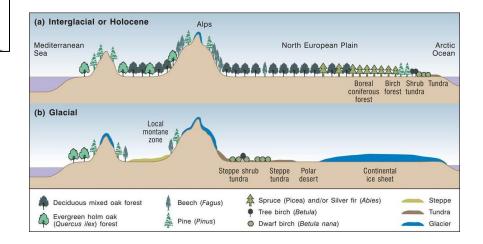



- complex phonologies
- · opaque morphologies odernity
- limited semantic transparency
- limited compositional structure
- less sophisticated syntax


- expanded vocabularies
- Increased syntactic complexity
 - simpler sound combinations
 - more transparent/regular morphologies
- greater compositionality
- enhanced semantic transparency

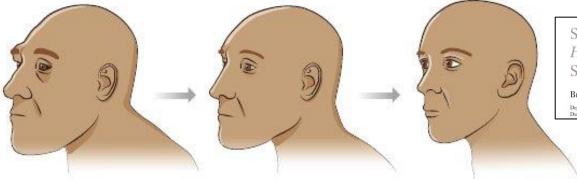






NEANDERTHAL-LIKE 'MINI-BRAINS' CREATED IN THE LAB WITH CRISPR

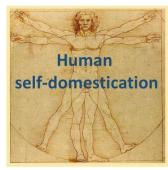
Organoids with an ancient gene variant are smaller and bumpier than those with human genes.



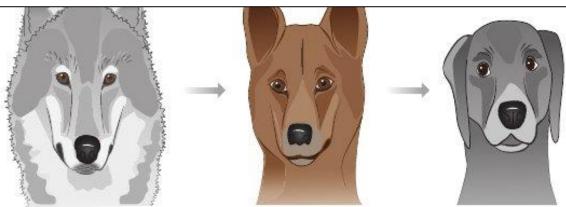
HOW I HAVE STRUCTURED MY TALK

- 1. Introduction
- 2. Language(s) evolution (research): an outline
- 3. The self-domestication account of human evolution
- 4. Conclusions and future prospects

Human self-domestication



Survival of the Friendliest: *Homo sapiens* Evolved via Selection for Prosociality


Brian Hare

Department of Evolutionary Anthropology and Center for Cognitive Neuroscie Duke University, Durham, North Carolina 27708; email: h.hare@duke.edu

Research Topic

Self-Domestication and Human Evolution

Figure 1

Homo sapiens evolved, in part, as a result of selection for increased in-group prosociality during the Paleolithic, leading to a variety of morphological, physiological, and cognitive changes also observed in domestic animals such as Canis familiaris.

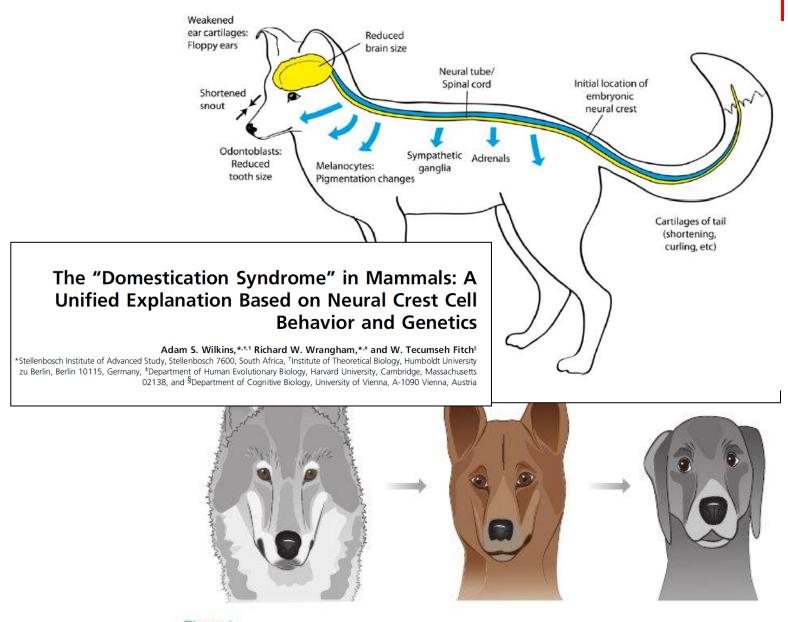
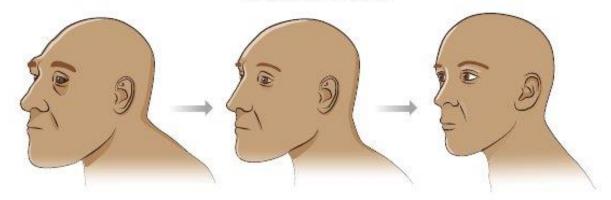
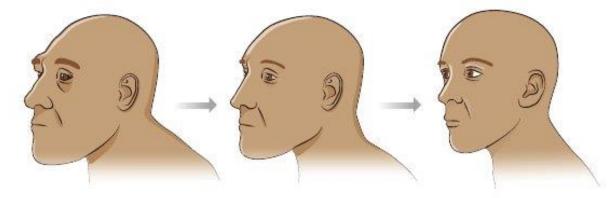
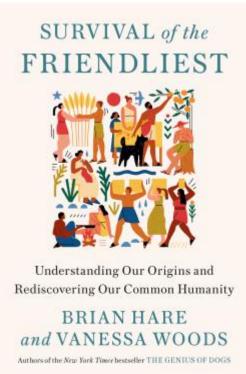




Figure 1

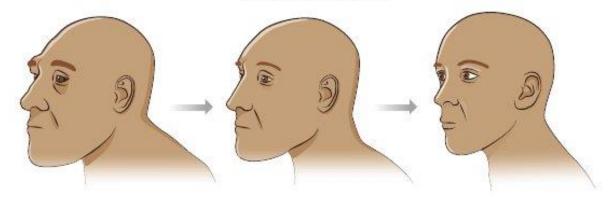
Homo sapiens evolved, in part, as a result of selection for increased in-group prosociality during the Paleolithic, leading to a variety of morphological, physiological, and cognitive changes also observed in domestic animals such as Canis familiaris.





JOURNAL ARTICLE

Craniofacial Feminization, Social Tolerance, and the Origins of Behavioral Modernity


Robert L. Cieri, Steven E. Churchill, Robert G. Franciscus, Jingzhi Tan and Brian Hare *Current Anthropology*Vol. 55, No. 4 (August 2014), pp. 419-443

- rise of community living
- advent of co-parenting (as human children demand more attention during longer periods)
- changes in our foraging ecology
- increasingly harsh environments
- moving to new territories

Human self-domestication

SURVIVAL of the FRIENDLIEST

Understanding Our Origins and Rediscovering Our Common Humanity

BRIAN HARE and VANESSA WOODS

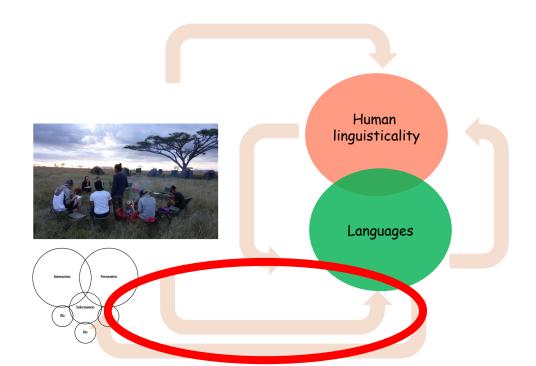
Authors of the New York Timer bestseller THE GENIUS OF DOGS

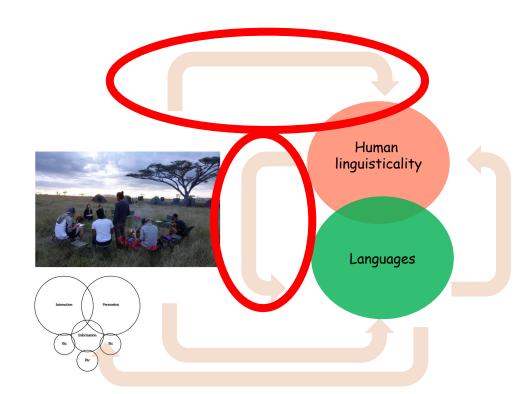
Increased tolerance and prosociality Increased serotonin and oxytocin Expanded developmental windows Feminized or juvenilized morphology Increased cooperative communication Psychon Bull Rev (2017) 24:106–110 DOI 10.3758/s13423-016-1165-8

BRIEF REPORT

Sexual communication and domestication may give rise to the signal complexity necessary for the emergence of language: An indication from songbird studies

Kazuo Okanoya¹


Biol Philos (2018) 33:9 https://doi.org/10.1007/s10539-018-9612-8

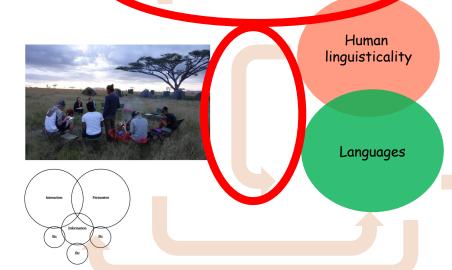

Self domestication and the evolution of language

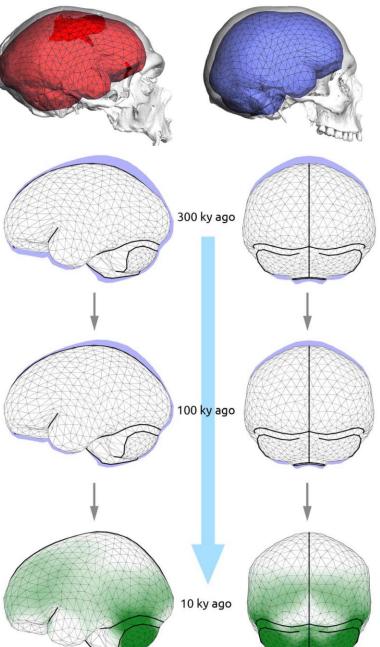
James Thomas¹ · Simon Kirby¹

PALEONTOLOGY

The evolution of modern human brain shape

Simon Neubauer,* Jean-Jacques Hublin, Philipp Gunz

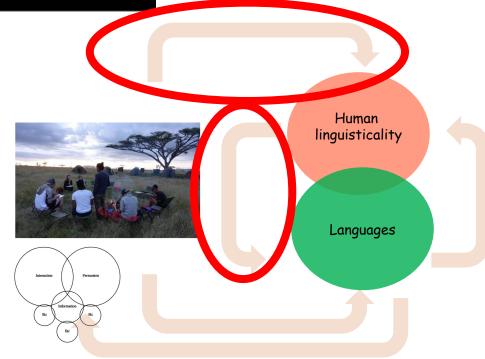

Modern humans have large and globular brains that distinguish them from their extinct *Homo* relatives. The characteristic globularity develops during a prenatal and early postnatal period of rapid brain growth critical for neural wiring and cognitive development. However, it remains unknown when and how brain globularity evolved and how it relates to evolutionary brain size increase. On the basis of computed tomographic scans and geometric morphometric analyses, we analyzed endocranial casts of *Homos appiens* fossils (M = 20) from different time periods. Our data show that, 300,000 years ago, brain size in early *H. sopiens* lineage, reaching present-day humans. Brain shape, however, evolved gradually within the *H. sapiens* lineage, reaching present-day human variation between about 100,000 and 35,000 years ago. This process started only after other key features of craniofacial morphology appeared modern and paralleled the emergence of behavioral modernity as seen from the archeological record. Our findings are consistent with important genetic changes affecting early brain development within the *H. sapiens* lineage since the origin of the species and before the transition to the Later Stone Age and the Upper Paleolithic that mark full behavioral modernity.




JOURNAL ARTICLE

Craniofacial Feminization, Social Tolerance, and the Origins of Behavioral Modernity

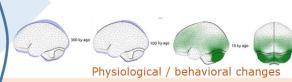
Robert L. Cieri, Steven E. Churchill, Robert G. Franciscus, Jingzhi Tan and Brian Hare *Current Anthropology*Vol. 55, No. 4 (August 2014), pp. 419-443



scientific reports

OPEN The adaptive significance of human scleral brightness: an experimental study

Slawomir Wacewicz¹⁵⁵, Juan Olvido Perea-García², Zdzisław Lewandowski³ & Dariusz P. Danel⁴


Anatomically-modern humans

Neanderthals

Selected changes in genes related to language-readiness

Selected changes in candidate genes for domestication

Changes in brain and cognition
Increased social complexity
Increased juvenile period
Increased parenting/teaching behavior
Teaching through input enhancement
Enhanced playing behavior

Stage 1

Stage 2

Stage 3

Stage 4

- two-slot grammars/compounds
- early language solidifies
- · basic hierarchical syntax
- ge solidifies

 greater compositionality
 - · increased syntactic complexity

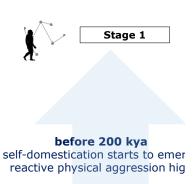
before 200 kya

self-domestication starts to emerge reactive physical aggression high

200 - 50 kya

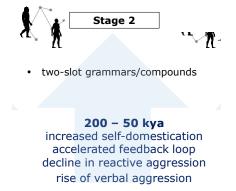
increased self-domestication accelerated feedback loop decline in reactive aggression rise of verbal aggression

50 - 10 kya

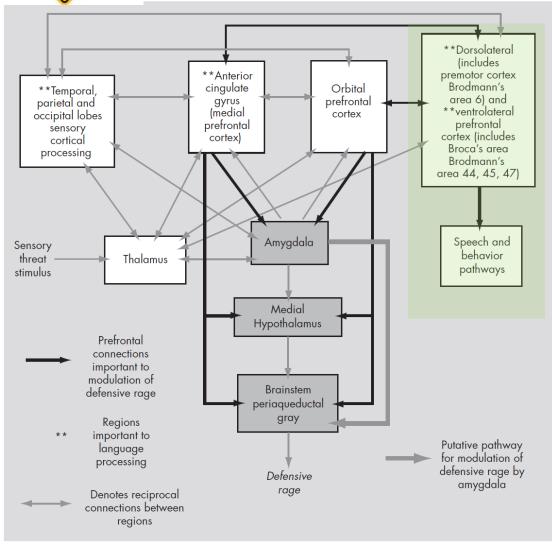

self-domestication at its peak reactive aggression at its low

10 kya onward

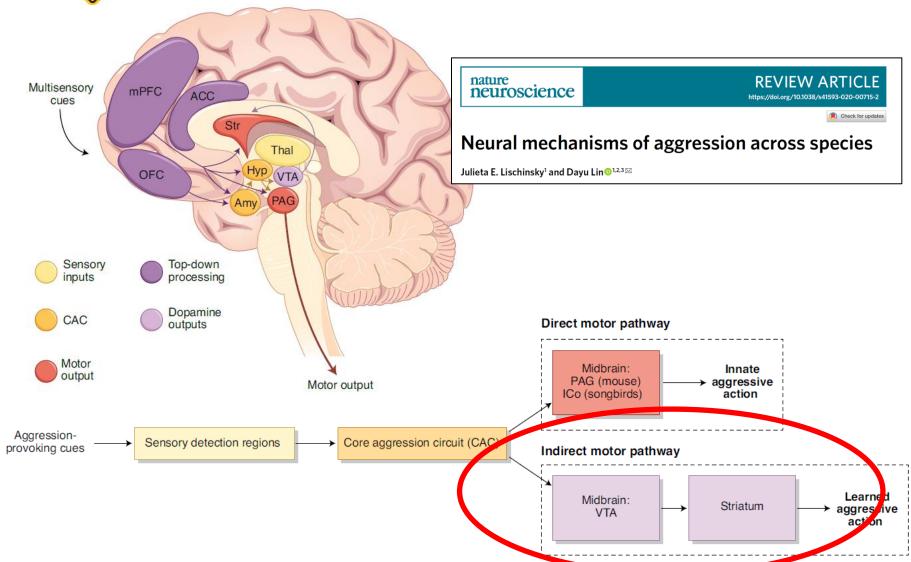
Variable presentation of self-domestication Increase in pro-active aggression (in some contexts)



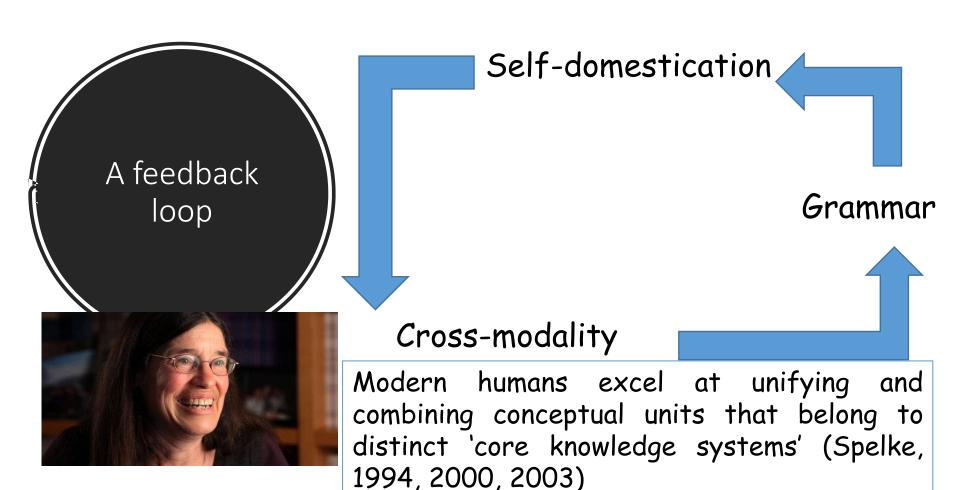
(1) Run! Go! Move! Up! Down! Look! Bite! Fire! Snake! Eagle!



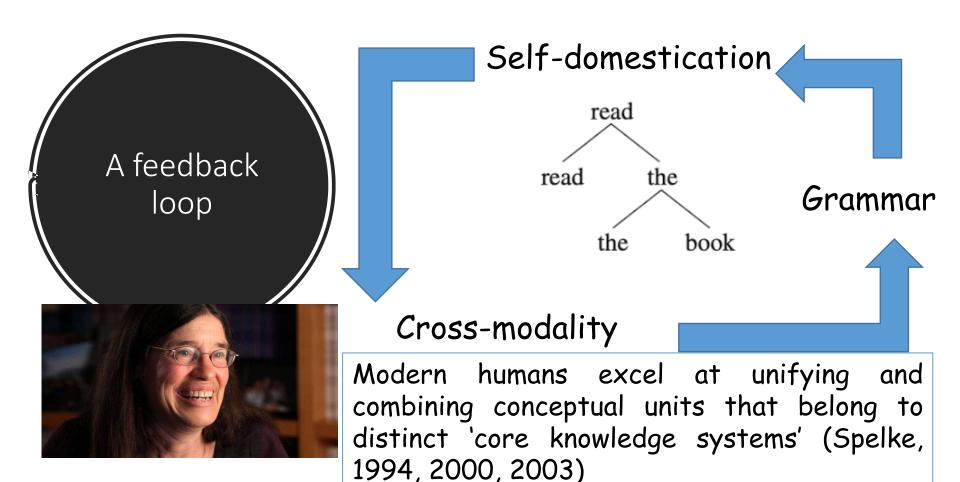
(2) a) Look snake! Eat fruit!
 Kill snake! Eagle fly!
 b) rattle-snake; stink-bug;
 scatter-brain; cry-baby



SPECIAL ARTICLES


Language and the Modulation of Impulsive Aggression

Lisa A. Miller, M.D. Robert L. Collins, Ph.D. Thomas A. Kent, M.D.



(2) a) Look snake! Eat fruit!
 Kill snake! Eagle fly!
 b) rattle-snake; stink-bug;
 scatter-brain; cry-baby

two-slot grammars/compounds

200 – 50 kva

increased self-domestication accelerated feedback loop decline in reactive aggression rise of verbal aggression

From physical aggression to verbal behavior: Language evolution and self-domestication feedback loop

Ljiljana Progovac¹, Antonio Benítez-Burraco^{2*}

A feedback loop "The first human who hurled an insult instead of a stone was the founder of civilization."

Freud

The Urge to Merge:
Ritual Insult and the Evolution of Syntax

Ljiljana Progovac & John L. Locke

Cross-modality

Anatomically-modern humans

Neanderthals

Selected changes in genes related to language-readiness

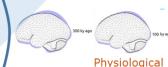
Selected changes in candidate genes for domestication

Changes in brain and cognition
Increased social complexity
Increased juvenile period
Increased parenting/teaching behavior
Teaching through input enhancement
Enhanced playing behavior

early language solidifies basic hierarchical syntax

50 – 10 kya f-domestication at its pe active aggression at its k

- a. $[SC/VP \text{ roll balls}] \rightarrow$
- b. $[_{VP} \text{ cats } [_{SC/VP} \text{ roll balls}]]$

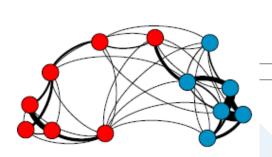


Anatomically-modern humans

genes related to language-readiness

Selected changes in candidate genes for domestication

Changes in brain and cognition Increased social complexity Increased juvenile period Increased parenting/teaching behavior Teaching through input enhancement Enhanced playing behavior



Stage 4

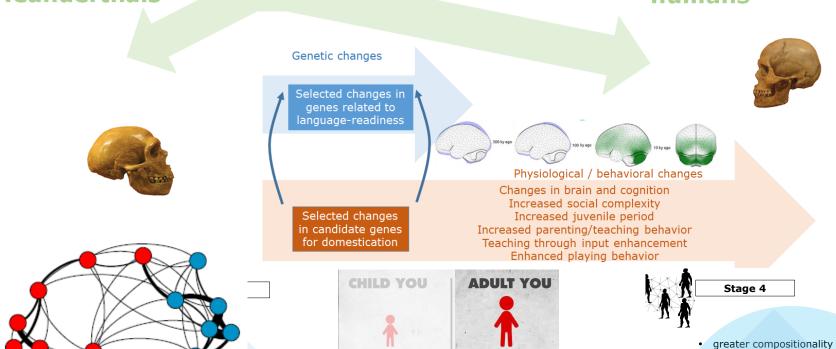
- greater compositionality
- increased syntactic complexity

10 kya onward

Variable presentation of self-domestication N Increase in pro-active aggression (in some contexts)

before 200 kya self-domestication starts to em reactive physical aggression h

Selected changes in



Anatomically-modern humans

The emergence of human warfare: Current perspectives

Marc Kissel¹ | Nam C. Kim²

10 kya onward

increased syntactic complexity

Variable presentation of self-domestication Increase in pro-active aggression (in some contexts)

Anatomically-modern humans

Genetic changes Selected changes in genes related to language-readiness Physiological / behavioral changes Changes in brain and cognition Increased social complexity **Feedback** Selected changes Increased juvenile period in candidate genes Increased parenting/teaching behavior Loop for domestication Teaching through input enhancement Enhanced playing behavior Stage 3 Stage 4 Stage 1

before 200 kya

self-domestication starts to emerge reactive physical aggression high

200 - 50 kva

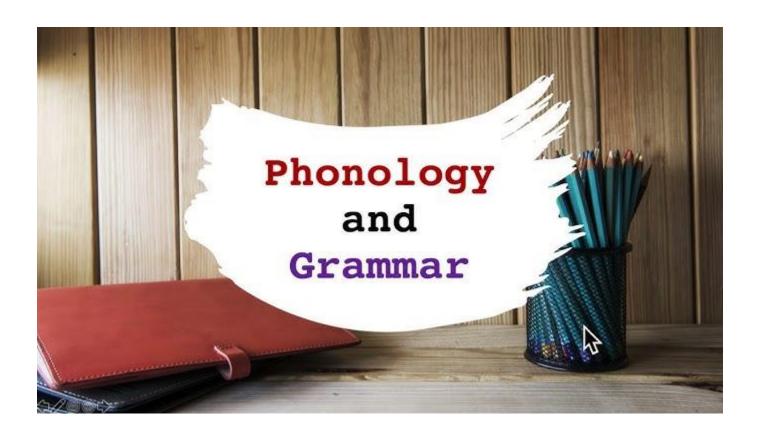
two-slot grammars/compounds

increased self-domestication accelerated feedback loop decline in reactive aggression rise of verbal aggression

early language solidifies

- basic hierarchical syntax

50 - 10 kva


self-domestication at its peak reactive aggression at its low

- greater compositionality
- increased syntactic complexity

10 kya onward

Variable presentation of self-domestication Increase in pro-active aggression (in some contexts)

1. Changes in the speech organs?

JOURNAL ARTICLE

Craniofacial Feminization, Social Tolerance, and the Origins of Behavioral Modernity

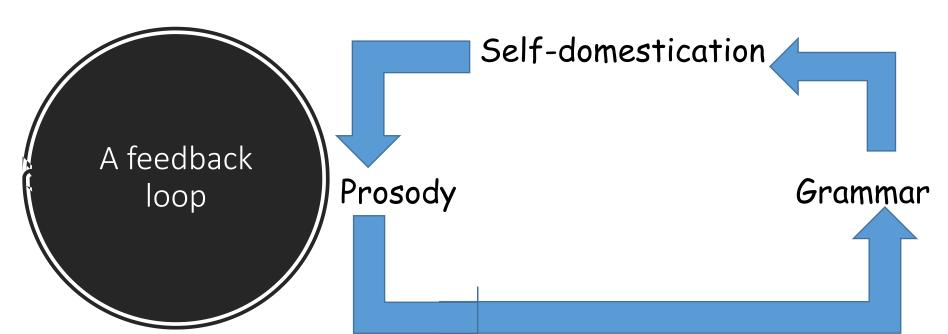
Robert L. Cieri, Steven E. Churchill, Robert G. Franciscus, Jingzhi Tan and Brian Hare *Current Anthropology*Vol. 55, No. 4 (August 2014), pp. 419-443

- 1. Changes in the speech organs?
- 2. Increased signal complexity in domesticated animals

- 1. Changes in the speech organs?
- 2. Increased signal complexity in domesticated animals
- 3. Expressing emotions / socializing with others

- 1. Changes in the speech organs?
- 2. Increased signal complexity in domesticated animals
- 3. Expressing emotions / socializing with others
- 4. Aggression impacts on prosody (and vice versa)

- 1. Changes in the speech organs?
- 2. Increased signal complexity in domesticated animals
- 3. Expressing emotions / socializing with others
- 4. Aggression impacts on prosody (and vice versa)
- 5. Aggression and prosody overlap at the brain level



- 1. Changes in the speech organs?
- 2. Increased signal complexity in domesticated animals
- 3. Expressing emotions / socializing with others
- 4. Aggression impacts on prosody (and vice versa)
- 5. Aggression and prosody overlap at the brain level
- 6. Prosody and grammar overlap

- 1. Changes in the speech organs?
- 2. Increased signal complexity in domesticated animals
- 3. Expressing emotions / socializing with others
- 4. Aggression impacts on prosody (and vice versa)
- 5. Aggression and prosody overlap at the brain level
- 6. Prosody and grammar overlap
- 7. Prosody bootstraps the acquisition of grammar

Received: 12 October 2022 Revised: 28 March 2023 Accepted: 11 April 2023 DOI: 10.1111/lnc3.12485

REVIEW ARTICLE

WILEY

Human self-domestication and the evolution of prosody

Grammar features (given the theoretical construct CP>TP >vP>VP/SC) Stage 1

Stage 2

Prosodic cues would have help parse

Prosodic groups would have enhanced word

prosody (stress, pitch accents, lexical tones)

compounds/two-word utterances would have

compounds/two-word utterances

Changes in the accent patterns of

structure (transitive constructions)

Two-slot SC

Stage 3

Stage 4

emerged

Preponderance of single word commands and exclamatives

intransitive stage: VP/SC small clause as the bottom layer reconstructed

Transitive (vP) stage:

- emergence of: (i) serial verb
- (ii) accusative
- (iii) ergative
- by addition or duplication to the two-slot grammars

Universal phrasal cues (e.g. pauses and phrase-final lengthening) would have emerged, with language-specific cues appearing later, as grammars diversified

- also intonational phrases
- Increasingly complex prosody might have triggered syntactic complexity

Intermediate phonological phrases would have emerged, as complex sentences

Highly hierarchical

addition of TP and CP

syntax stage:

facilitating e.g.

embedding

(abstract layers),

Evolutionary stages for human prosody

- One-word commands and exclamations would have exhibit duration, intensity, pauses and tone
- Multisyllabic words could be expected, and hence, word prosodic effects (stress, pitch contours, tones...)
- One-word prosodic constructions might have induced the emergence of bimorphemic words

- Phonological phrases would have been
- favoured the emergence of prosodic phrasal -

Increasingly sophisticated prosody contributing to enhance pragmatic abilities (e.g. inference, turn-taking)

Human self-domestication and the evolution of prosody

Antonio Benítez-Burraco¹ D | Wendy Elvira-García² D

Grammar features
(given the theoretical
construct
CP>TP > VP>VP/SC)

human prosody

Stage 1

Preponderance of single word commands and exclamatives Stage 2

Two-slot SC intransitive stage:

VP/SC small clause as the bottom layer reconstructed.

Stage 3

4 4

Stage 4

emergence of:
(i) serial verb
(ii) accusative
(iii) ergative
by addition or duplication to the two-slot grammars

Transitive (vP) stage:

Universal phrasal cues (e.g. pauses and phrase-final lengthening) would have emerged, with language-specific cues appearing later, as grammars diversified

- Phonological phrases would have been also intonational phrases
- Increasingly complex prosody might have triggered syntactic complexity

Highly hierarchical syntax stage: additionof TP and CP (abstract layers), facilitating e.g. embedding

Intermediate phonological phrases would have emerged, as complex sentences emerged

- Evolutionary stages for One-word commands and exclamations would have exhibit duration, intensity, pauses and tone
 - Multisyllabic words could be expected, and hence, word prosodic effects (stress, pitch contours, tones...)
 - One-word prosodic constructions might have induced the emergence of bimorphemic words

compounds/two-word utterances
Prosodic groups would have enhanced word
prosody (stress, pitch accents, lexical tones)
Changes in the accent patterns of
compounds/two-word utterances would have
favoured the emergence of prosodic phrasal

Prosodic cues would have help parse

structure (transitive constructions)

ophisticated prosody contributing to enhance pragmatic abilities (e.g. inference, turn-taking

Received: 12 October 2022 Revised: 28 March 2023 Accepted: 11 April 2023 DOI: 10.1111/lnc3.12485

REVIEW ARTICLE

WILEY

Human self-domestication and the evolution of prosody

Antonio Benítez-Burraco¹ • Wendy Elvira-García² •

Grammar features (given the theoretical construct CP>TP >vP>VP/SC) Stage 1

Stage 2

Stage 4

Preponderance of single word commands and exclamatives

Two-slot SC intransitive stage: VP/SC small clause as the bottom layer reconstructed

Transitive (vP) stage: mergence of:

- (i) serial verb
- (ii) accusative
- (iii) ergative by addition or duplication to

the two-slot grammars

Universal phrasal cues (e.g. pauses and phrase-final lengthening) would have emerged, with language-specific cues appearing later, as grammars diversified

- Phonological phrases would have been also intonational phrases
- favoured the emergence of prosodic phrasal have triggered syntactic complexity

Highly hierarchical syntax stage: addition of TP and CP (abstract layers), facilitating e.g. embedding

Intermediate phonological phrases would have emerged, as complex sentences emerged

One-word commands and exclamations would have exhibit duration, intensity, **Evolutionary** pauses and tone stages for human prosody

- Multisyllabic words could be expected, and hence, word prosodic effects (stress, pitch contours, tones...)
- One-word prosodic constructions might have induced the emergence of bimorphemic words

compounds/two-word utterances would have

structure (transitive constructions) Increasingly sophisticated prosody contributing to enhan

Prosodic cues would have help parse

Prosodic groups would have enhanced word

prosody (stress, pitch accents, lexical tones)

compounds/two-word utterances

Changes in the accent patterns of

Received: 12 October 2022 Revised: 28 March 2023 Accepted: 11 April 2023 DOI: 10.1111/lnc3.12485

REVIEW ARTICLE

WILEY

Human self-domestication and the evolution of prosody

Antonio Benítez-Burraco¹ • Wendy Elvira-García² •

Grammar features (given the theoretical construct CP>TP >vP>VP/SC) Stage 1

Stage 2

Prosodic cues would have help parse

Prosodic groups would have enhanced word

prosody (stress, pitch accents, lexical tones)

compounds/two-word utterances

Changes in the accent patterns of

structure (transitive constructions)

Stage 3

Stage 4

Preponderance of single word commands and exclamatives

Two-slot SC intransitive stage:

VP/SC small clause as the bottom layer reconstructed

Transitive (vP) stage:

- emergence of: (i) serial verb
- (ii) accusative
- (iii) ergative

by addition or duplication to the two-slot grammars

Universal phrasal cues (e.g. pauses and phrase-final lengthening) would have emerged, with language-specific cues appearing later, as grammars diversified Highly hierarchical syntax stage: addition of TP and CP (abstract layers), facilitating e.g.

Intermediate phonological phrases would have emerged, as complex sentences emerged

embedding

Evolutionary stages for human prosody

- One-word commands and exclamations would have exhibit duration, intensity, pauses and tone
- Multisyllabic words could be expected, and hence, word prosodic effects (stress, pitch contours, tones...)
- One-word prosodic constructions might have induced the emergence of bimorphemic words

Phonological phrases would have been compounds/two-word utterances would have also intonational phrases

favoured the emergence of prosodic phrasal -Increasingly complex prosody might have triggered syntactic complexity

Increasingly sophisticated prosody contributing to enhance pragmatic abilities (e.g. inference, turn-taking

Received: 12 October 2022 Revised: 28 March 2023 Accepted: 11 April 2023 DOI: 10.1111/lnc3.12485

REVIEW ARTICLE

WILEY

Human self-domestication and the evolution of prosody

Grammar features (given the theoretical construct CP>TP >vP>VP/SC) Stage 1

Stage 2

Prosodic cues would have help parse

Prosodic groups would have enhanced word

prosody (stress, pitch accents, lexical tones)

compounds/two-word utterances would have

compounds/two-word utterances

Changes in the accent patterns of

structure (transitive constructions)

Two-slot SC

Stage 3

Stage 4

emerged

Preponderance of single word commands and exclamatives

intransitive stage: VP/SC small clause as the bottom layer reconstructed

Transitive (vP) stage:

- emergence of: (i) serial verb
- (ii) accusative
- (iii) ergative
- by addition or duplication to the two-slot grammars

Universal phrasal cues (e.g. pauses and phrase-final lengthening) would have emerged, with language-specific cues appearing later, as grammars diversified

- also intonational phrases
- Increasingly complex prosody might have triggered syntactic complexity

Intermediate phonological phrases would have emerged, as complex sentences

Highly hierarchical

addition of TP and CP

syntax stage:

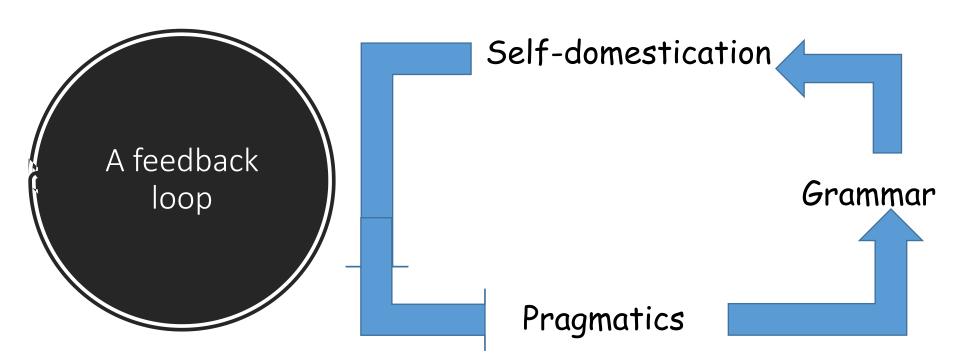
facilitating e.g.

embedding

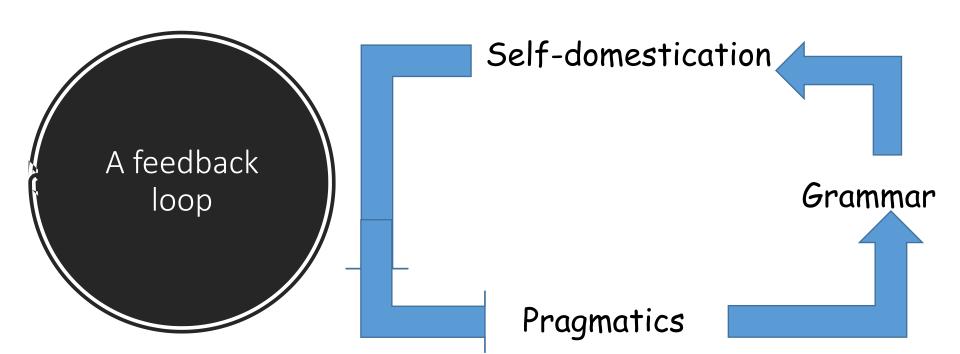
(abstract layers),

Evolutionary stages for human prosody

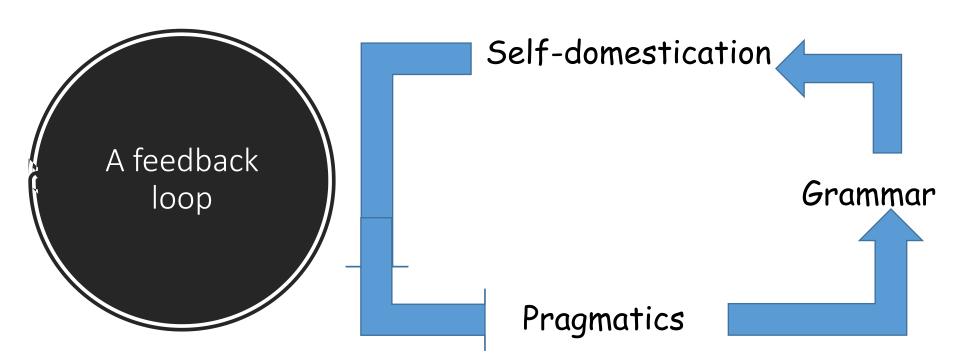
- One-word commands and exclamations would have exhibit duration, intensity, pauses and tone
- Multisyllabic words could be expected, and hence, word prosodic effects (stress, pitch contours, tones...)
- One-word prosodic constructions might have induced the emergence of bimorphemic words


- Phonological phrases would have been
- favoured the emergence of prosodic phrasal -

Increasingly sophisticated prosody contributing to enhance pragmatic abilities (e.g. inference, turn-taking)


- Behavioral changes
- Cognitive changes

- Behavioral changes
- Cognitive changes



- Behavioral changes
- Cognitive changes

COGNITIVE SCIENCE

A Multidisciplinary Journal

Cognitive Science 45 (2021) e12987
© 2021 The Authors, Cognitive Science published by Wiley Periodicals LLC on behalf of Cognitive Science Society (CSS). All rights reserved.

ISSN: 1551-6709 online

DOI: 10.1111/cogs.12987

Human Self-Domestication and the Evolution of Pragmatics

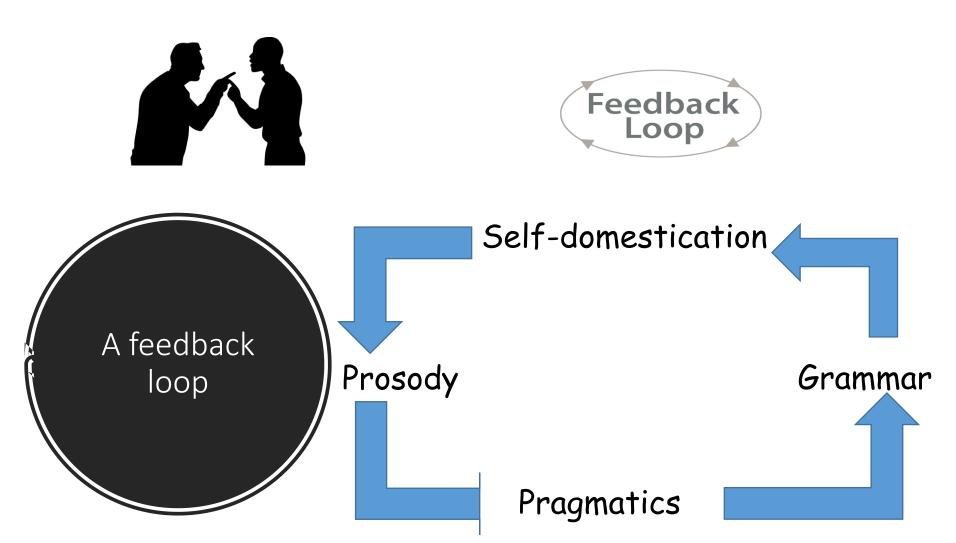
Antonio Benítez-Burraco, a 🙃 Francesco Ferretti, b Ljiljana Progovac c

*Department of Spanish, Linguistics and Theory of Literature (Linguistics), Faculty of Philology, University of Seville

> bDepartment of Philosophy, Communication and Performing Arts. Roma Tre University Department of English, Linguistics Program, Wayne State University

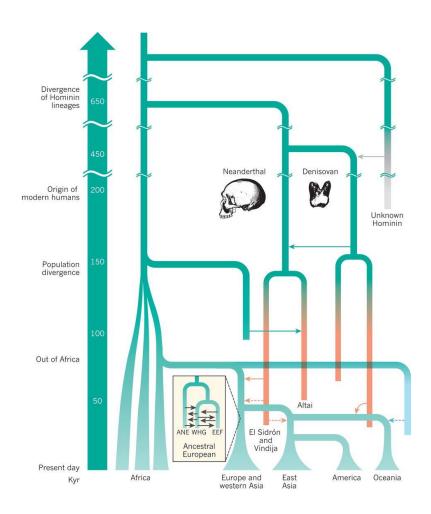
Received 3 November 2020; received in revised form 25 April 2021; accepted 26 April 2021

A feedback loop

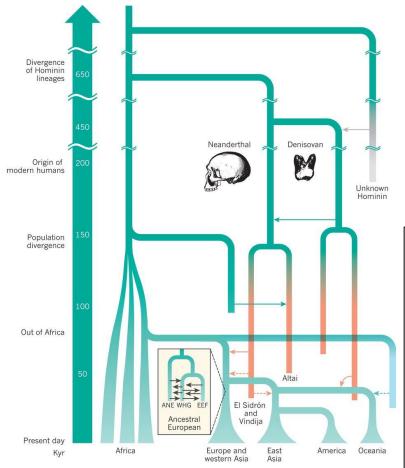

Self-domestication

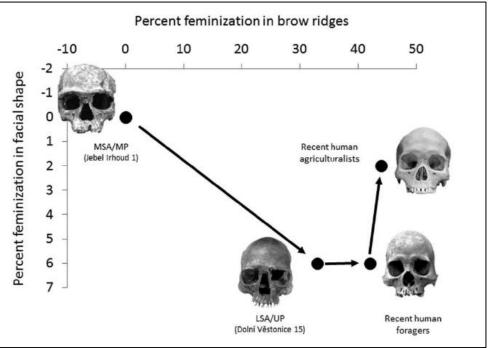
Grammar

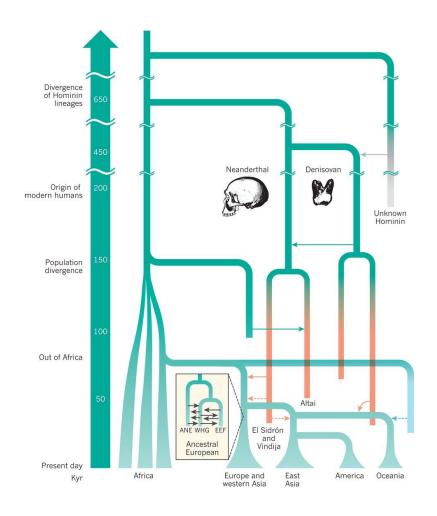
Pragmatics



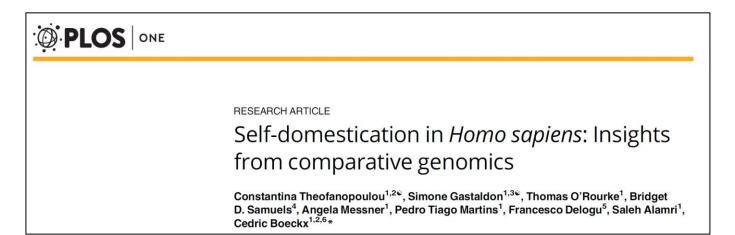
HOW I HAVE STRUCTURED MY TALK

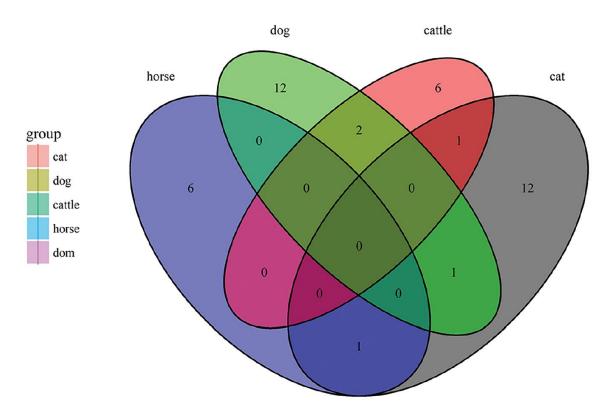

- 1. Introduction
- 2. Language(s) evolution (research): an outline
- 3. The self-domestication account of human evolution
- 4. Conclusions and future prospects





Current Anthropology Volume 55, Number 4, August 2014


Craniofacial Feminization, Social Tolerance, and the Origins of Behavioral Modernity


by Robert L. Cieri, Steven E. Churchill, Robert G. Franciscus, Jingzhi Tan, and Brian Hare

Recent selection of candidate genes for mammal domestication in Europeans and language change in Europe: a hypothesis

Antonio Benítez-Burraco, Evgeny Chekalin, Sergey Bruskin, Tatiana Tatarinova & Irina Morozova

To cite this article: Antonio Benítez-Burraco, Evgeny Chekalin, Sergey Bruskin, Tatiana Tatarinova & Irina Morozova (2021): Recent selection of candidate genes for mammal domestication in Europeans and language change in Europe: a hypothesis, Annals of Human Biology, DOI: 10.1080/03014460.2021.1936634

To link to this article: https://doi.org/10.1080/03014460.2021.1936634

Recent selection of candidate genes for mammal domestication in Europeans and language change in Europe: a hypothesis

Antonio Benítez-Burraco, Evgeny Chekalin, Sergey Bruskin, Tatiana Tatarinova & Irina Morozova

To cite this article: Antonio Benítez-Burraco, Evgeny Chekalin, Sergey Bruskin, Tatiana Tatarinova & Irina Morozova (2021): Recent selection of candidate genes for mammal domestication in Europeans and language change in Europe: a hypothesis, Annals of Human Biology, DOI: 10.1080/03014460.2021.1936634

To link to this article: https://doi.org/10.1080/03014460.2021.1936634

Set of genes	Ancient SNPs count	Modern SNPs count	Enrichment score	p-value	p-value adjusted Bonferroni	Enriched Bonferroni 0.01 threshold					
Synonymous SNPs											
Domestication	2165	3759	1.24	0.2138	1	No					
Neural crest	194	315	1.19	0.2353	1	No					
Domestication syndrome	49	76	0.98	0.326	1	No					
Positive selection in AMH	144	268	-0.25	0.8012	1	No					
Nonsynonymous SNPs											
Domestication	2440	4844	-4.32	1.58×10 ⁻⁵	0.005	Modern					
Neural_crest	213	240	5.01	5.36×10 ⁻⁷	2×10-4	Ancient					
Domestication syndrome	61	73	2.49	0.0127	1	No					
Positive selection in AMH	138	231	0.69	0.4885	1	No					

Recent selection of candidate genes for mammal domestication in Europeans and language change in Europe: a hypothesis

Antonio Benítez-Burraco, Evgeny Chekalin, Sergey Bruskin, Tatiana Tatarinova & Irina Morozova

To cite this article: Antonio Benítez-Burraco, Evgeny Chekalin, Sergey Bruskin, Tatiana Tatarinova & Irina Morozova (2021): Recent selection of candidate genes for mammal domestication in Europeans and language change in Europe: a hypothesis, Annals of Human Biology, DOI: 10.1080/03014460.2021.1936634

To link to this article: https://doi.org/10.1080/03014460.2021.1936634

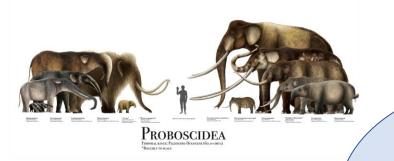
Set of genes	Ancient SNPs count	Modern SNPs count	Enrichment score	p-value	p-value adjusted Bonferroni	Enriched Bonferroni 0.01 threshold				
PLOS ON		No								
Daniel										
Domes	Domes RESEARCH ARTICLE									
Positive	Self-domestication in <i>Homo sapiens</i> : Insights									
from comparative genomics Constantina Theofanopoulou ^{1,2©} , Simone Gastaldon ^{1,3©} , Thomas O'Rourke ¹ , Bridget										
	eh Alamri ¹ , 5	Modern								
lveurar erest	Cedric Boeckx ^{1,2,6} *									
Domestication syndrome	61	73	2.49	0.0127	1	No				
Positive selection in AMH	138	231	0.69	0.4885	1	No				

		_\	VOCALLEARNING					
Vocal learning	Domestication traits	MO DEL			TIMING			
Strong evidence Medium evidence Weak evidence Unknown	Yes / Present No / Absent Inconclusive Unknown	Ability to accurately copy the model	Ability to learn to produce new sounds	Ability for broad mimicry	Ability to learn throughout life	Ability to learn fast	Ability to retain learning for long	
	Elephants							
_ <i>(</i>	Common marmoset							
, j	Modern human							
	Humpback whale							
	Bottlenose dolphin							
$\neg \ \vdash$	Bats							
₹	Harbourseal							
└ ◆	Grey seal							

							DON	1EST	TCA	TIC	T N	RAI	ΓS								
	MORPHOLOGY					HORMONE LEVELS		HORMONE LEVELS							SOCIA	L BEHA	VIOUR	& COGN	NITION		
Low sexual dimorphism	Reduction in skull / face / jaw size	Reduction in numberand size of teeth	Neotenous features in adults	Deopigmentation of skin and fur		High levels of serotonin	High levels of oxytocin	Socially-regulated cortisol	Low levels of testosterone		Reduced aggression	Increased prosociality & cooperation	Increased tolerance & curiosity	Presence of alloparenting	Low levels of infanticide	Increased communication & information sharing	Play	Long juvenile period	Attentiveness and sensitivity to humans' eye /facial cues		
			9 3																		

RESEARCH ARTICLE

EVOLUTION
PSYCHOLOGICAL AND COGNITIVE SCIENCES



Elephants as an animal model for self-domestication

Limor Raviv^{a,b,c,1}, Sarah L. Jacobson^{d,e}, Joshua M. Plotnik^{d,e}, Jacob Bowman^f, Vincent Lynch^f, and Antonio Benítez-Burraco^g

Edited by Marcus Feldman, Stanford University, Stanford, CA; received May 24, 2022; accepted February 27, 2023

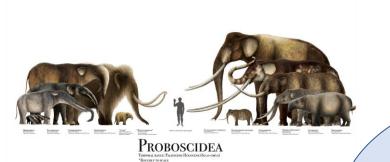
Genes positively selected in elephants

SETBP1 CDH1 NEK4 [...]

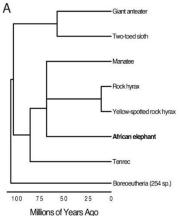
Genes selected in domesticated mammals

SETBP1

- associated to language deficits
- associated to phonological working memory dysfunction
- associated to social and behavioural disturbances


CDH1

- involved in cortical neurogenesis
- involved in neural connectivity


NEK4

associated to autism, schizophrenia, and bipolar disorder abnormal features of self-domestication

Genes positively selected in elephants

Beta3 adrenergic receptor signaling pathway

Plasminogen activating cascade

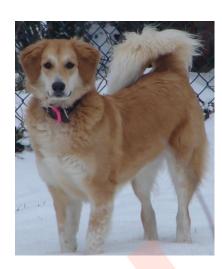
Blood coagulation

SHT3 type receptor mediated signaling pathway

Opioid proenkephalin pathway

Beta2 adrenergic receptor signaling pathway

Muscarinic acetylcholine receptor 1 and 3 signaling pathway


SHT4 type receptor mediated signaling pathway

Opioid proopiomelanocortin pathway

Cortocotropin releasing factor receptor signaling pathway

Beta1 adrenergic receptor signaling pathway

Body Traits

Wild animals

Common features

- Straight ears (dingoes)
- . Larger carnassial teeth and longer canine teeth in dingoes
- Tooth morphology (feral pigs)Less frequent estrous cycles (dingoes)
- Delayed onset of sexual maturation
- . absence of dew claws (dingoes)

Feral animals

Common Features

- · Coloration (feral pigeons, pigs, dogs)
- . Horn size (sheep)
- Shorter snouts

Domesticated Animals

Behavior

Wild animals

Common features

- · High levels of aggressive behavior
- Avoidance behavior towards humans
- . Limited eye contact with humans
- . Vocalization amount and patterns
- . High reactivity to predators

Feral animals

Common Features

- · Reduced hunting abilities
- . Low responsiveness to environmental threats

Domesticated Animals

The brain

Common features

- . Large olfactory system
- Large hippocampus

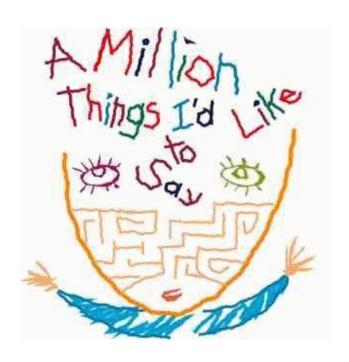
Feral animals

Common Features

· Reduced brain size

Domesticated Animals

Wild animals


Genes selected in domesticated mammals

27 genes of interest

Genes selected in feralized mammals

PERSPECTIVES

OPINION

Decanalization and the origin of complex disease

Greg Gibson

Primate cognition

• DNA

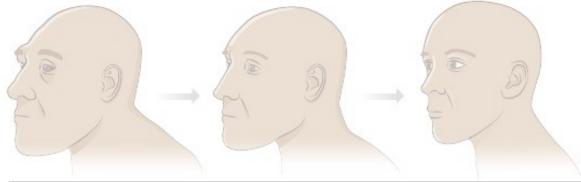
• culture

RESEARCH ARTICLE

Widespread signatures of positive selection in common risk alleles associated to autism spectrum disorder

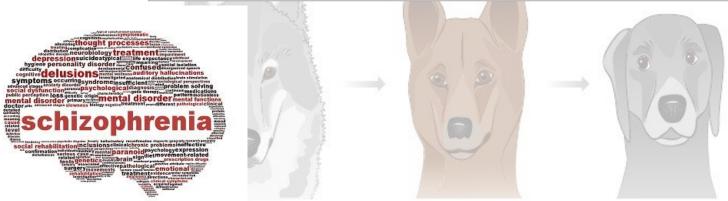
Renato Polimanti^{1,2}*, Joel Gelernter^{1,2,3,4}

1 Department of Psychiatry, Yale School of Medicine, West Haven, Connecticut, United States of America, 2 VA CT Healthcare Center, West Haven, Connecticut, United States of America, 3 Departments of Genetics, Yale School of Medicine, New Haven, Connecticut, United States of America, 4 Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, United States of America


Archival Report

Genetic Markers of Human Evolution Are Enriched in Schizophrenia

Saurabh Srinivasan, Francesco Bettella, Morten Mattingsdal, Yunpeng Wang, Aree Witoelar, Andrew J. Schork, Wesley K. Thompson, Verena Zuber, The Schizophrenia Working Group of the Psychiatric Genomics Consortium, The International Headache Genetics Consortium, Bendik S. Winsvold, John-Anker Zwart, David A. Collier, Rahul S. Desikan, Ingrid Melle, Thomas Werge, Anders M. Dale, Srdjan Djurovic, and Ole A. Andreassen



Research Topic

Self-Domestication and Human Evolution

Figure 1

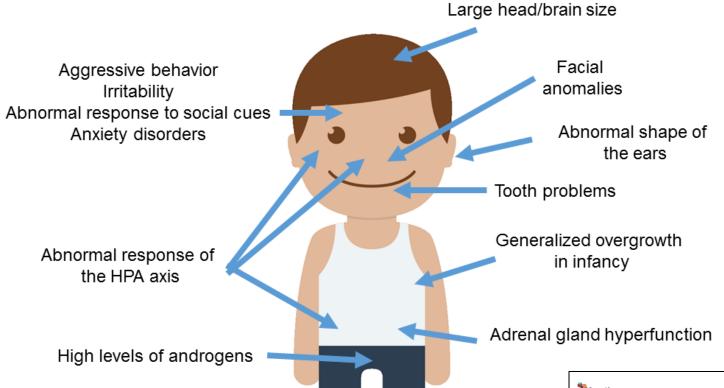
Homo sapiens evolved, in part, as a result of selection for increased in-group prosociality during the Paleolithic, leading to a variety of morphological, physiological, and cognitive changes also observed in domestic animals such as Canis familiaris.

Problems with structural aspects of language


Problems with pragmatics

Cognitive deficits

Behavioral deficits


KEIO/2

shutterstock.com = 1589742757

Occasionally linked to hypomelanosis

Frontiers
in Neuroscience

HYPOTHESIS AND THEORY
published 259 August 2016
do: 10.3599 hree 2016.00373

Language Impairments in ASD
Resulting from a Failed
Domestication of the Human Brain

Antonio Benifez-Burraco¹, Wanda Lattanti²¹ and Elliot Murphy²⁺¹

1 Department of Philosogy, University of Hadrin, Hadrin, Spain, ² Institute of Anatomy and Cell Biology, Leiwersitä Cattolica del

Domestication $(p = 0.002)$							
Gene name	logFC	FDR Pvalue					
PAX3	-0,463	1,91E-02					
<i>ALDH1L2</i>	-0,347	3,10E-02					
LIN28B	-0,315	7,76E-03					
<i>ALDH16A1</i>	-0,304	6,10E-04					
IGF1	-0,299	9,37E-02					
ABCG1	-0,296	6,62E-02					
CCNT2	0,268	7,21E-02					
IFT81	0,270	2,99E-02					
PTPN4	0,299	5,35E-02					
JPH3	0,302	1,79E-02					
CASP7	0,317	4,12E-02					
UBXN10	0,396	1,18E-02					
TFCP2L1	0,441	7,40E-03					
HOPX	0,477	4,56E-02					

Rigidity in autism spectrum disorder (ASD): A unified (evolutionary) account of linguistic and non-linguistic symptoms

AUTHORS

Antonio Benítez-Burraco and Ljiljana Progovac

Rigidity in autism spectrum disorder (ASD): A unified (evolutionary) account of linguistic and non-linguistic symptoms

AUTHORS

Antonio Benítez-Burraco and Ljiljana Progovac

Behavioral and Brain Sciences

Article

Metrics

Volume 31, Issue 3 June 2008, pp. 241-261

Psychosis and autism as diametrical disorders of the social brain

Bernard Crespi (a1) and Christopher Badcock (a2)

https://doi.org/10.1017/S0140525X08004214 Published online: 26 June 2008

dally activities mentioned to the property of the property of

Neuroscience and Biobehavioral Reviews 83 (2017) 742-764

Contents lists available at ScienceDirect

Neuroscience and Biobehavioral Reviews

journal homepage: www.elsevier.com/locate/neubiorev

Review article

Language deficits in schizophrenia and autism as related oscillatory connectomopathies: An evolutionary account

Elliot Murphy^{a,*}, Antonio Benítez-Burraco^b

- ^a Division of Psychology and Language Sciences, University College London, London, United Kingdom
- ^b Department of Philology, University of Huelva, Huelva, Spain

Aggressive behavior Impairment of social cognition High levels of oxytocin

Abnormal response of the HPA axis to social stress

Low levels of testosterone Delayed puberty onset

Occasionally linked to hypomelanosis Low levels of vitamin D Shorter skull shape/ reduced brain volume

Facial anomalies

Abnormal shape of the ears

Anomalies in the mouth/ decreased tooth size

Low weight at birth and slow growth in childho

and thought processes in the control of the control

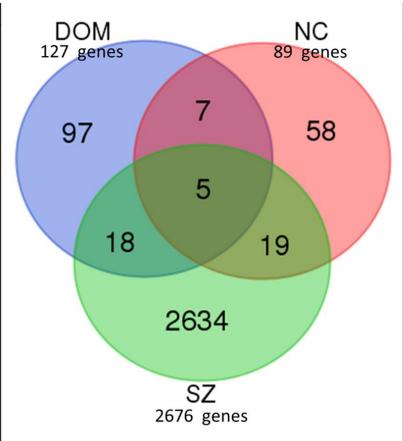
Adrenal gland hyperfunction

Brain, Behavior

Original Paper

Brain Behav Evol

Received: September 8, 2016 Returned for revision: October 13, 2016


Schizophrenia and Human Self-Domestication: An Evolutionary Linguistics Approach

Antonio Benítez-Burraco^a Lorena Di Pietro^b Marta Barba^b Wanda Lattanzi^b

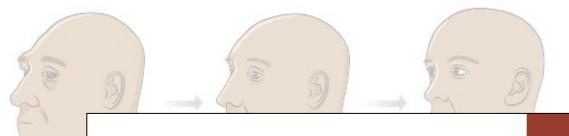
*Department of Philology, Faculty of Humanities, University of Huelva, Huelva, Spain; *Institute of Anatomy and

Cell Biology, Università Cattolica del Sacro Cuore, Rome, Italy

Gene Symbol	Entrez ID	SZ	DOM	NC
ABCG1	9619	+	+	
BDNF	627	+		+
BMPR1B	658	+	+	
CACNA1D	776	+	+	
CDH2	1000	+		+
COX4I1	1327	+	+	
CRKL	1399	+		+
DLGAP1	9229	+	+	
DLX5	1749	+		+
DLX6	1750	+		+
EVC2	132884	+	+	
FOXD3	27022	+	+	+
GDNF	2668	+	+	+
GFAP	2670	+		+
GLI3	2737	+		+
GRID1	2894	+	+	
HES1	3280	+		+
IMMP2L	83943	+	+	
JPH3	57338	+	+	
KDM6B	23135	+	+	
KIF1B	23095	+		+

Gene Symbol	Entrez ID	SZ	DOM	NC
MSX1	4487	+		+
NEUROG1	4762	+		+
NF1	4763	+		+
NIPBL	25836	+	+	
NTM	50863	+	+	
OLIG2	10215	+		+
POMT1	10585	+		+
RET	5979	+	+	+
RHOB	388	+		+
ROBO1	6091	+		+
ROBO2	6092	+		+
SKI	6497	+	+	
SOX10	6663	+	+	+
SOX9	6662	+	+	+
SYNJ2	8871	+	+	
TBX1	6899	+		+
TPH1	7166	+	+	
TRPM1	4308	+	+	
VDAC1	7416	+	+	
WNK2	65268	+	+	
ZEB2	9839	+		+

Brain, Behavior and Evolution **Original Paper**


Brain Behav Evol DOI: 10.1159/000468506 Received: September 8, 2016 Returned for revision: October 13, 2016 Accepted after second revision: March 2, 2017 Published online: May 3, 2017

Schizophrenia and Human Self-Domestication: An Evolutionary Linguistics Approach

Antonio Benítez-Burraco^a Lorena Di Pietro^b Marta Barba^b Wanda Lattanzi^b

^aDepartment of Philology, Faculty of Humanities, University of Huelva, Huelva, Spain; ^bInstitute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, Rome, Italy

Archival Report

Genetic Markers of Human Evolution Are Enriched in Schizophrenia

Saurabh Srinivasan, Francesco Bettella, Morten Mattingsdal, Yunpeng Wang, Aree Witoelar, Andrew J. Schork, Wesley K. Thompson, Verena Zuber, The Schizophrenia Working Group of the Psychiatric Genomics Consortium, The International Headache Genetics Consortium, Bendik S. Winsvold, John-Anker Zwart, David A. Collier, Rahul S. Desikan, Ingrid Melle, Thomas Werge, Anders M. Dale, Srdjan Djurovic, and Ole A. Andreassen

Figure 1

Homo sapiens evolved Paleolithic, leading to

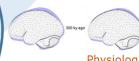
RESEARCH ARTICLE

Widespread signatures of positive selection in common risk alleles associated to autism spectrum disorder

Renato Polimanti^{1,2}*, Joel Gelernter^{1,2,3,4}

- $\textbf{1} \ \ \mathsf{Department} \ \mathsf{of} \ \mathsf{Psychiatry}, \\ \mathsf{Yale} \ \mathsf{School} \ \mathsf{of} \ \mathsf{Medicine}, \\ \mathsf{West} \ \mathsf{Haven}, \ \mathsf{Connecticut}, \\ \mathsf{United} \ \mathsf{States} \ \mathsf{of} \ \mathsf{America}, \\ \mathsf$
- 2 VA CT Healthcare Center, West Haven, Connecticut, United States of America, 3 Departments of Genetics, Yale School of Medicine, New Haven, Connecticut, United States of America, 4 Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, United States of America

domestic animals such as Canis familiaris.


Neanderthals

Anatomically-modern humans

Genetic changes

Selected changes in genes related to language-readiness

Selected changes in candidate genes for domestication

Physiological / behavioral changes

Changes in brain and cognition Increased social complexity Increased juvenile period Increased parenting/teaching behavior Teaching through input enhancement Enhanced playing behavior

Stage 1

Stage 2

Stage 3

Stage 4

two-slot grammars/compounds

200 - 50 kya

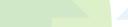
increased self-domestication accelerated feedback loop decline in reactive aggression rise of verbal aggression

· early language solidifies

basic hierarchical syntax

50 - 10 kya

self-domestication at its peak reactive aggression at its low


- greater compositionality
- increased syntactic complexity

10 kya onward

Variable presentation of self-domestication Increase in pro-active aggression (in some contexts)

before 200 kya

self-domestication starts to emerge reactive physical aggression high

Neanderthals

Anatomically-modern humans

Genetic changes

Selected changes in genes related to language-readiness

Selected changes

in candidate genes

for domestication

Physiological / behavioral changes

Changes in brain and cognition Increased social complexity Increased juvenile period Increased parenting/teaching behavior Teaching through input enhancement Enhanced playing behavior

Stage 1

Stage 2

Stage 3

Stage 4

two-slot grammars/compounds

- early language solidifies
- · basic hierarchical syntax
- greater compositionality
- increased syntactic complexity

before 200 kya

self-domestication starts to emerge reactive physical aggression high

200 - 50 kya

increased self-domestication accelerated feedback loop decline in reactive aggression rise of verbal aggression

50 - 10 kya

self-domestication at its peak reactive aggression at its low

10 kya onward

Variable presentation of self-domestication Increase in pro-active aggression (in some contexts)

	cross-modality: global	cross-modality: local		
ASD	reduced	increased		
SZ	increased	possibly reduced		
	reactive	proactive		
	reactive aggression	proactive aggression		
ASD		•		

Language evolution: examining the link between cross-modality and aggression through the lens of disorders

Antonio Benítez-Burraco¹ and Ljiljana Progovac²

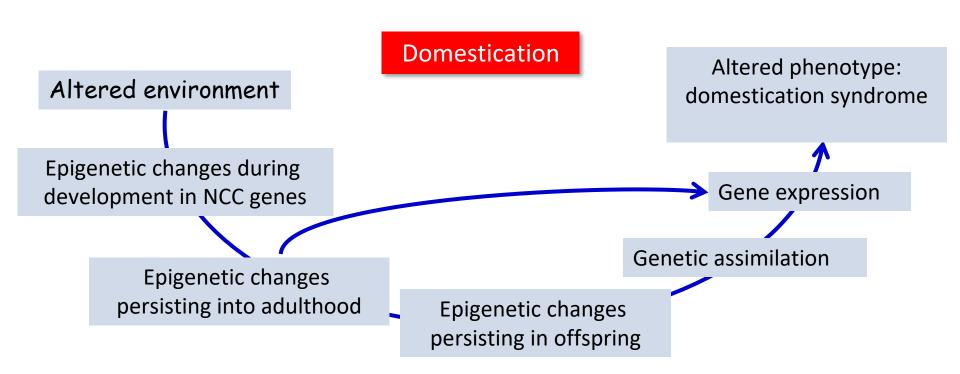
¹Department of Spanish, Linguistics and Theory of Literature (Linguistics), Faculty of Philology, University of Seville. Spain

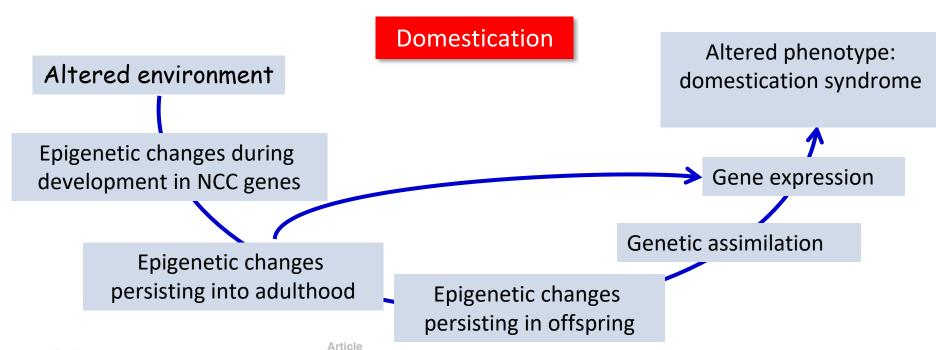
(iii) AB-B, 0000-0003-4574-5666; LP, 0000-0001-8679-5809

	literal language	metaphorical language
ASD	impaired	impaired
SZ	somewhat impaired	impaired

²Linguistics Program, Department of English, Wayne State University, Detroit, MI, USA

European sea bass (Dicentrarchus labrax)
F. Moronidae

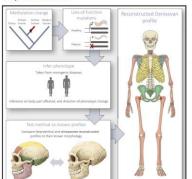




Article

Fish as Model Systems to Study Epigenetic Drivers in Human Self-Domestication and Neurodevelopmental Cognitive Disorders

Dafni Anastasiadi 1,* , Francesc Piferrer 2 , Maren Wellenreuther 1,3 and Antonio Benítez Burraco 4



Cell

Reconstructing Denisovan Anatomy Using DNA Methylation Maps

Graphical Abstract

Authors

David Gokhman, Nadav Mishol,

Marc de Manuel, ...,

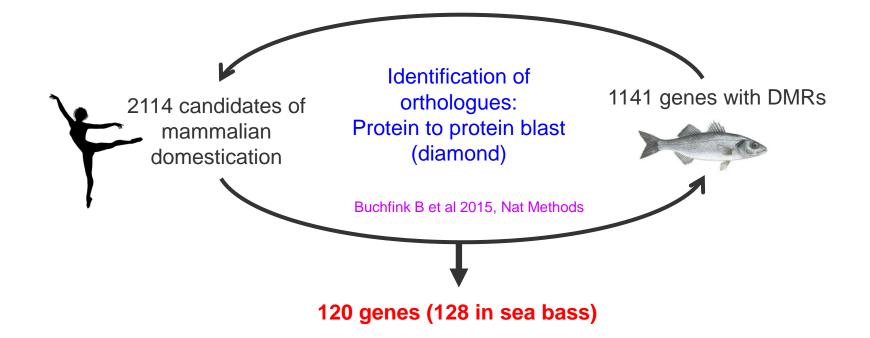
Tomas Marques-Bonet, Yoel Rak, Liran Carmel

Correspondence

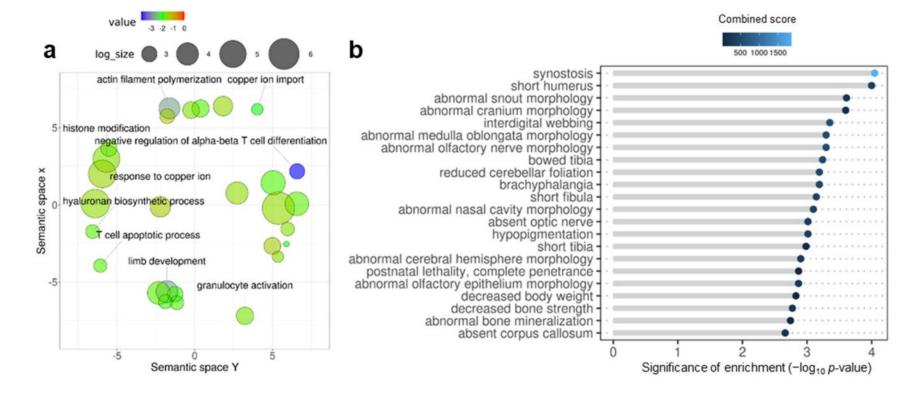
david.gokhman@mail.huji.ac.il (D.G.), liran.carmel@huji.ac.il (L.C.)

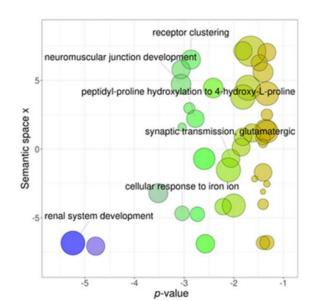
n Brief

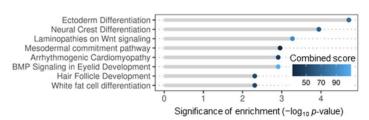
DNA methylation maps can be used to predict anatomical features in hominins and chimpanzees, allowing for reconstruction of a putative anatomical profile of the Denisovan, currently absent from the fossil record.

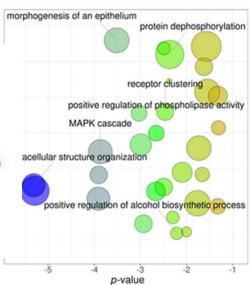


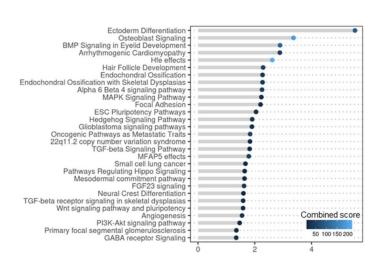
European sea bass (*Dicentrarchus labrax*)
F. Moronidae





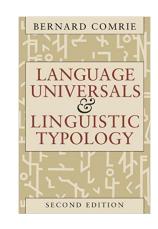


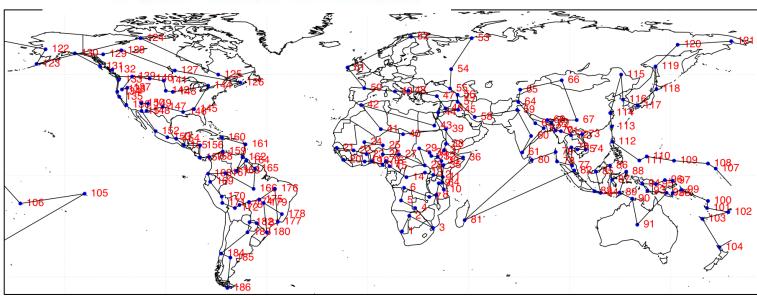

KEIO/2



Shared knowldege

S-languages


- complex phonologies
- opaque morphologies
- limited semantic transparency
- limited compositional structure
- less sophisticated syntax


RESEARCH ARTICLE

Female status, food security, and stature sexual dimorphism: Testing mate choice as a mechanism in human selfdomestication

Ben Thomas Gleeson ⋈, Geoff Kushnick

THE WORLD ATLAS
OF LANGUAGE STRUCTURES
ONLINE

Feedback Loop

Human self-domestication

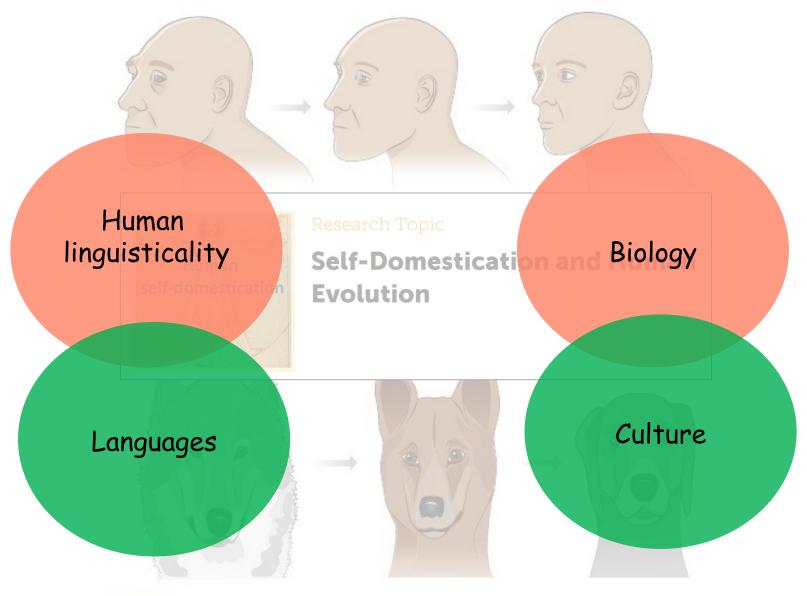
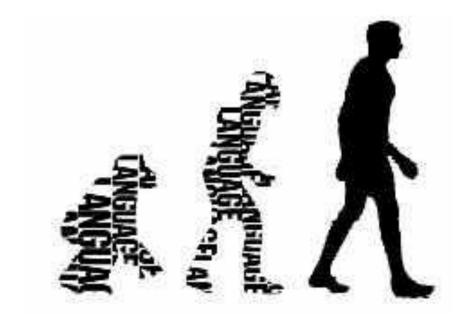
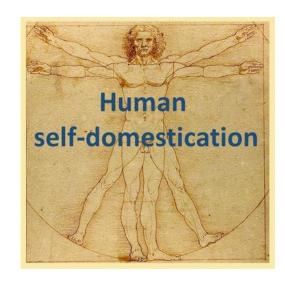




Figure 1

Homo sapiens evolved, in part, as a result of selection for increased in-group prosociality during the Paleolithic, leading to a variety of morphological, physiological, and cognitive changes also observed in domestic animals such as Canis familiaris.

Thanks a lot for your attention!

Dr. Antonio Benítez Burraco Full profesor of Linguistics

Área de Lingüística General. Departamento de Lengua Española, Lingüística y Teoría de la Literatura. Facultad de Filología.

Universidad de Sevilla

e-mail: abenitez8@us.es

web: http://antoniobenitez.wix.com/benitez-burraco

Twitter: @abenitezburraco

Principal Investigator. Research Project: "La evolución de las lenguas modernas: fundamentos genéticos y sociológicos del continuo lingüístico esotérico-exotérico" (PID2020-114516GB-I00))

Principal Investigator. Research Group "Biolingüística" (HUM 972) (Junta de Andalucía, spain)